aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/create_squad_features.py
diff options
context:
space:
mode:
Diffstat (limited to 'scripts/create_squad_features.py')
-rw-r--r--scripts/create_squad_features.py157
1 files changed, 66 insertions, 91 deletions
diff --git a/scripts/create_squad_features.py b/scripts/create_squad_features.py
index e779b9e..ce274e0 100644
--- a/scripts/create_squad_features.py
+++ b/scripts/create_squad_features.py
@@ -1,38 +1,28 @@
+#!/usr/bin/env python
+# coding: utf-8
- #!/usr/bin/env python
- # coding: utf-8
-
- # auther = 'liuzhiyong'
- # date = 20201204
+# auther = 'liuzhiyong'
+# date = 20201204
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
-import datetime
-import threading
-import time
-from flask import Flask, abort, request, jsonify
-from concurrent.futures import ThreadPoolExecutor
import collections
import math
-import os
-import random
-import modeling
-import optimization
import tokenization
import six
import tensorflow as tf
-import sys
import requests
-from global_setting import *
+from global_setting import _improve_answer_span
version_2_with_negative = True
-def get_squad_feature_result(title,text,tokenizer,question, url):
+
+def get_squad_feature_result(title, text, tokenizer, question, url):
def make_json(title, text, question):
res = {}
@@ -59,7 +49,6 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
res['data'].append(data_inside.copy())
return json.dumps(res)
-
def _compute_softmax(scores):
"""Compute softmax probability over raw logits."""
if not scores:
@@ -83,7 +72,7 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
return probs
def get_final_text(pred_text, orig_text, do_lower_case):
-
+
def _strip_spaces(text):
ns_chars = []
ns_to_s_map = collections.OrderedDict()
@@ -152,7 +141,7 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
return output_text
def _get_best_indexes(logits, n_best_size):
-
+
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
best_indexes = []
@@ -164,8 +153,7 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"])
- def write_predictions(all_examples, all_features, all_results, n_best_size,
- max_answer_length, do_lower_case):
+ def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case):
"""Write final predictions to the json file and log-odds of null if needed."""
example_index_to_features = collections.defaultdict(list)
@@ -236,19 +224,19 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
if version_2_with_negative:
prelim_predictions.append(
- _PrelimPrediction(
- feature_index=min_null_feature_index,
- start_index=0,
- end_index=0,
- start_logit=null_start_logit,
- end_logit=null_end_logit))
+ _PrelimPrediction(
+ feature_index=min_null_feature_index,
+ start_index=0,
+ end_index=0,
+ start_logit=null_start_logit,
+ end_logit=null_end_logit))
prelim_predictions = sorted(
- prelim_predictions,
- key=lambda x: (x.start_logit + x.end_logit),
- reverse=True)
+ prelim_predictions,
+ key=lambda x: (x.start_logit + x.end_logit),
+ reverse=True)
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
- "NbestPrediction", ["text", "start_logit", "end_logit"])
+ "NbestPrediction", ["text", "start_logit", "end_logit"])
seen_predictions = {}
nbest = []
@@ -282,10 +270,10 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
seen_predictions[final_text] = True
nbest.append(
- _NbestPrediction(
- text=final_text,
- start_logit=pred.start_logit,
- end_logit=pred.end_logit))
+ _NbestPrediction(
+ text=final_text,
+ start_logit=pred.start_logit,
+ end_logit=pred.end_logit))
# if we didn't inlude the empty option in the n-best, inlcude it
if version_2_with_negative:
@@ -299,7 +287,7 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
# just create a nonce prediction in this case to avoid failure.
if not nbest:
nbest.append(
- _NbestPrediction(text="", start_logit=0.0, end_logit=0.0))
+ _NbestPrediction(text="", start_logit=0.0, end_logit=0.0))
assert len(nbest) >= 1
@@ -339,30 +327,28 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
all_nbest_json[example.qas_id] = nbest_json
return all_predictions
-
def create_int_feature(values):
feature = tf.train.Feature(
int64_list=tf.train.Int64List(value=list(values)))
return feature
-
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
- unique_id,
- example_index,
- doc_span_index,
- tokens,
- token_to_orig_map,
- token_is_max_context,
- input_ids,
- input_mask,
- segment_ids,
- start_position=None,
- end_position=None,
- is_impossible=None):
+ unique_id,
+ example_index,
+ doc_span_index,
+ tokens,
+ token_to_orig_map,
+ token_is_max_context,
+ input_ids,
+ input_mask,
+ segment_ids,
+ start_position=None,
+ end_position=None,
+ is_impossible=None):
self.unique_id = unique_id
self.example_index = example_index
self.doc_span_index = doc_span_index
@@ -413,7 +399,7 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
return cur_span_index == best_span_index
def convert_examples_to_features(examples, tokenizer, max_seq_length,
- doc_stride, max_query_length, is_training):
+ doc_stride, max_query_length, is_training):
"""Loads a data file into a list of `InputBatch`s."""
unique_id = 1000000000
@@ -487,7 +473,7 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
is_max_context = _check_is_max_context(doc_spans, doc_span_index,
- split_token_index)
+ split_token_index)
token_is_max_context[len(tokens)] = is_max_context
tokens.append(all_doc_tokens[split_token_index])
segment_ids.append(1)
@@ -518,8 +504,7 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
out_of_span = False
- if not (tok_start_position >= doc_start and
- tok_end_position <= doc_end):
+ if not (tok_start_position >= doc_start and tok_end_position <= doc_end):
out_of_span = True
if out_of_span:
start_position = 0
@@ -574,22 +559,21 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
is_impossible=example.is_impossible)
# Run callback
-
+
result.append(feature)
unique_id += 1
return result
class SquadExample(object):
-
def __init__(self,
- qas_id,
- question_text,
- doc_tokens,
- orig_answer_text=None,
- start_position=None,
- end_position=None,
- is_impossible=False):
+ qas_id,
+ question_text,
+ doc_tokens,
+ orig_answer_text=None,
+ start_position=None,
+ end_position=None,
+ is_impossible=False):
self.qas_id = qas_id
self.question_text = question_text
self.doc_tokens = doc_tokens
@@ -615,8 +599,6 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
s += ", is_impossible: %r" % (self.is_impossible)
return s
-
-
def read_squad_examples(input_file, is_training):
"""Read a SQuAD json file into a list of SquadExample."""
@@ -654,7 +636,6 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
is_impossible = False
if is_training:
-
if (len(qa["answers"]) != 1) and (not is_impossible):
raise ValueError(
"For training, each question should have exactly 1 answer.")
@@ -664,8 +645,7 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
answer_offset = answer["answer_start"]
answer_length = len(orig_answer_text)
start_position = char_to_word_offset[answer_offset]
- end_position = char_to_word_offset[answer_offset + answer_length -
- 1]
+ end_position = char_to_word_offset[answer_offset + answer_length - 1]
# Only add answers where the text can be exactly recovered from the
# document. If this CAN'T happen it's likely due to weird Unicode
# stuff so we will just skip the example.
@@ -678,7 +658,7 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
tokenization.whitespace_tokenize(orig_answer_text))
if actual_text.find(cleaned_answer_text) == -1:
tf.logging.warning("Could not find answer: '%s' vs. '%s'",
- actual_text, cleaned_answer_text)
+ actual_text, cleaned_answer_text)
continue
else:
start_position = -1
@@ -697,27 +677,24 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
return examples
+ def get_result(title, text, question, url):
- def get_result(title,text,question,url):
-
- data = make_json(title,text,question)
-
-
- examples = read_squad_examples(data,False)
+ data = make_json(title, text, question)
+ examples = read_squad_examples(data, False)
predict_files = convert_examples_to_features(
- examples=examples,
- tokenizer=tokenizer,
- max_seq_length=512,
- doc_stride=128,
- max_query_length=100,
- is_training=False,
+ examples=examples,
+ tokenizer=tokenizer,
+ max_seq_length=512,
+ doc_stride=128,
+ max_query_length=100,
+ is_training=False,
)
-
+
headers = {"content-type": "application/json"}
all_results = []
- for predict_file in predict_files:
+ for predict_file in predict_files:
features = {}
features["unique_ids"] = predict_file.unique_id
features["input_mask"] = predict_file.input_mask
@@ -725,22 +702,20 @@ def get_squad_feature_result(title,text,tokenizer,question, url):
features["input_ids"] = predict_file.input_ids
data_list = []
data_list.append(features)
-
+
data = json.dumps({"instances": data_list})
-
+
json_response = requests.post(url, data=data, headers=headers)
-
x = json.loads(json_response.text)
-
+
all_results.append(
RawResult(
unique_id=predict_file.unique_id,
start_logits=x['predictions'][0]['start_logits'],
end_logits=x['predictions'][0]['end_logits']))
-
- result = write_predictions(examples, predict_files, all_results,20, 64,True)
+
+ result = write_predictions(examples, predict_files, all_results, 20, 64, True)
return result
return get_result(title, text, question, url)
-