summaryrefslogtreecommitdiffstats
path: root/netconf/restconf/restconf-nb-bierman02/src/test/resources/modules/restconf-module-testing/ietf-inet-types.yang
blob: de20febbb74beabda9aa06dae057a028feff72c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
 module ietf-inet-types {

   namespace "urn:ietf:params:xml:ns:yang:ietf-inet-types";
   prefix "inet";

   organization
    "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

   contact
    "WG Web:   <http://tools.ietf.org/wg/netmod/>
     WG List:  <mailto:netmod@ietf.org>

     WG Chair: David Partain
               <mailto:david.partain@ericsson.com>

     WG Chair: David Kessens
               <mailto:david.kessens@nsn.com>

     Editor:   Juergen Schoenwaelder
               <mailto:j.schoenwaelder@jacobs-university.de>";

   description
    "This module contains a collection of generally useful derived
     YANG data types for Internet addresses and related things.

     Copyright (c) 2010 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or without
     modification, is permitted pursuant to, and subject to the license
     terms contained in, the Simplified BSD License set forth in Section
     4.c of the IETF Trust's Legal Provisions Relating to IETF Documents
     (http://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 6021; see
     the RFC itself for full legal notices.";

   revision 2010-09-24 {
     description
      "Initial revision.";
     reference
      "RFC 6021: Common YANG Data Types";
   }

   /*** collection of protocol field related types ***/

   typedef ip-version {
     type enumeration {
       enum unknown {
         value "0";
         description
          "An unknown or unspecified version of the Internet protocol.";
       }
       enum ipv4 {
         value "1";
         description
          "The IPv4 protocol as defined in RFC 791.";
       }
       enum ipv6 {
         value "2";
         description
          "The IPv6 protocol as defined in RFC 2460.";
       }
     }
     description
      "This value represents the version of the IP protocol.

       In the value set and its semantics, this type is equivalent
       to the InetVersion textual convention of the SMIv2.";
     reference
      "RFC  791: Internet Protocol
       RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
       RFC 4001: Textual Conventions for Internet Network Addresses";
   }

   typedef dscp {
     type uint8 {
       range "0..63";
     }
     description
      "The dscp type represents a Differentiated Services Code-Point
       that may be used for marking packets in a traffic stream.

       In the value set and its semantics, this type is equivalent
       to the Dscp textual convention of the SMIv2.";
     reference
      "RFC 3289: Management Information Base for the Differentiated
                 Services Architecture
       RFC 2474: Definition of the Differentiated Services Field
                 (DS Field) in the IPv4 and IPv6 Headers
       RFC 2780: IANA Allocation Guidelines For Values In
                 the Internet Protocol and Related Headers";
   }

   typedef ipv6-flow-label {
     type uint32 {
       range "0..1048575";
     }
     description
      "The flow-label type represents flow identifier or Flow Label
       in an IPv6 packet header that may be used to discriminate
       traffic flows.

       In the value set and its semantics, this type is equivalent
       to the IPv6FlowLabel textual convention of the SMIv2.";
     reference
      "RFC 3595: Textual Conventions for IPv6 Flow Label
       RFC 2460: Internet Protocol, Version 6 (IPv6) Specification";
   }

   typedef port-number {
     type uint16 {
       range "0..65535";
     }
     description
      "The port-number type represents a 16-bit port number of an
       Internet transport layer protocol such as UDP, TCP, DCCP, or
       SCTP.  Port numbers are assigned by IANA.  A current list of
       all assignments is available from <http://www.iana.org/>.

       Note that the port number value zero is reserved by IANA.  In
       situations where the value zero does not make sense, it can
       be excluded by subtyping the port-number type.

       In the value set and its semantics, this type is equivalent
       to the InetPortNumber textual convention of the SMIv2.";
     reference
      "RFC  768: User Datagram Protocol
       RFC  793: Transmission Control Protocol
       RFC 4960: Stream Control Transmission Protocol
       RFC 4340: Datagram Congestion Control Protocol (DCCP)
       RFC 4001: Textual Conventions for Internet Network Addresses";
   }

   /*** collection of autonomous system related types ***/

   typedef as-number {
     type uint32;
     description
      "The as-number type represents autonomous system numbers
       which identify an Autonomous System (AS).  An AS is a set
       of routers under a single technical administration, using
       an interior gateway protocol and common metrics to route
       packets within the AS, and using an exterior gateway
       protocol to route packets to other ASs'.  IANA maintains
       the AS number space and has delegated large parts to the
       regional registries.

       Autonomous system numbers were originally limited to 16
       bits.  BGP extensions have enlarged the autonomous system
       number space to 32 bits.  This type therefore uses an uint32
       base type without a range restriction in order to support
       a larger autonomous system number space.

       In the value set and its semantics, this type is equivalent
       to the InetAutonomousSystemNumber textual convention of
       the SMIv2.";
     reference
      "RFC 1930: Guidelines for creation, selection, and registration
                 of an Autonomous System (AS)
       RFC 4271: A Border Gateway Protocol 4 (BGP-4)
       RFC 4893: BGP Support for Four-octet AS Number Space
       RFC 4001: Textual Conventions for Internet Network Addresses";
   }

   /*** collection of IP address and hostname related types ***/

   typedef ip-address {
     type union {
       type inet:ipv4-address;
       type inet:ipv6-address;
     }
     description
      "The ip-address type represents an IP address and is IP
       version neutral.  The format of the textual representations
       implies the IP version.";
   }

   typedef ipv4-address {
     type string {
       pattern
         '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
       +  '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
       + '(%[\p{N}\p{L}]+)?';
     }
     description
       "The ipv4-address type represents an IPv4 address in
        dotted-quad notation.  The IPv4 address may include a zone
        index, separated by a % sign.

        The zone index is used to disambiguate identical address
        values.  For link-local addresses, the zone index will
        typically be the interface index number or the name of an
        interface.  If the zone index is not present, the default
        zone of the device will be used.

        The canonical format for the zone index is the numerical
        format";
   }

   typedef ipv6-address {
     type string {
       pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
             + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
             + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
             + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
             + '(%[\p{N}\p{L}]+)?';
       pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
             + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
             + '(%.+)?';
     }
     description
      "The ipv6-address type represents an IPv6 address in full,
       mixed, shortened, and shortened-mixed notation.  The IPv6
       address may include a zone index, separated by a % sign.

       The zone index is used to disambiguate identical address
       values.  For link-local addresses, the zone index will
       typically be the interface index number or the name of an
       interface.  If the zone index is not present, the default
       zone of the device will be used.

       The canonical format of IPv6 addresses uses the compressed
       format described in RFC 4291, Section 2.2, item 2 with the
       following additional rules: the :: substitution must be
       applied to the longest sequence of all-zero 16-bit chunks
       in an IPv6 address.  If there is a tie, the first sequence
       of all-zero 16-bit chunks is replaced by ::.  Single
       all-zero 16-bit chunks are not compressed.  The canonical
       format uses lowercase characters and leading zeros are
       not allowed.  The canonical format for the zone index is
       the numerical format as described in RFC 4007, Section
       11.2.";
     reference
      "RFC 4291: IP Version 6 Addressing Architecture
       RFC 4007: IPv6 Scoped Address Architecture
       RFC 5952: A Recommendation for IPv6 Address Text Representation";
   }

   typedef ip-prefix {
     type union {
       type inet:ipv4-prefix;
       type inet:ipv6-prefix;
     }
     description
      "The ip-prefix type represents an IP prefix and is IP
       version neutral.  The format of the textual representations
       implies the IP version.";
   }

   typedef ipv4-prefix {
     type string {
       pattern
          '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
        +  '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
        + '/(([0-9])|([1-2][0-9])|(3[0-2]))';
     }
     description
      "The ipv4-prefix type represents an IPv4 address prefix.
       The prefix length is given by the number following the
       slash character and must be less than or equal to 32.

       A prefix length value of n corresponds to an IP address
       mask that has n contiguous 1-bits from the most
       significant bit (MSB) and all other bits set to 0.

       The canonical format of an IPv4 prefix has all bits of
       the IPv4 address set to zero that are not part of the
       IPv4 prefix.";
   }

   typedef ipv6-prefix {
     type string {
       pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
             + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
             + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
             + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
             + '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))';
       pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
             + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
             + '(/.+)';
     }
     description
      "The ipv6-prefix type represents an IPv6 address prefix.
       The prefix length is given by the number following the
       slash character and must be less than or equal 128.

       A prefix length value of n corresponds to an IP address
       mask that has n contiguous 1-bits from the most
       significant bit (MSB) and all other bits set to 0.

       The IPv6 address should have all bits that do not belong
       to the prefix set to zero.

       The canonical format of an IPv6 prefix has all bits of
       the IPv6 address set to zero that are not part of the
       IPv6 prefix.  Furthermore, IPv6 address is represented
       in the compressed format described in RFC 4291, Section
       2.2, item 2 with the following additional rules: the ::
       substitution must be applied to the longest sequence of
       all-zero 16-bit chunks in an IPv6 address.  If there is
       a tie, the first sequence of all-zero 16-bit chunks is
       replaced by ::.  Single all-zero 16-bit chunks are not
       compressed.  The canonical format uses lowercase
       characters and leading zeros are not allowed.";
     reference
      "RFC 4291: IP Version 6 Addressing Architecture";
   }

   /*** collection of domain name and URI types ***/

   typedef domain-name {
     type string {
       pattern '((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*'
            +  '([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)'
            +  '|\.';
       length "1..253";
     }
     description
      "The domain-name type represents a DNS domain name.  The
       name SHOULD be fully qualified whenever possible.

       Internet domain names are only loosely specified.  Section
       3.5 of RFC 1034 recommends a syntax (modified in Section
       2.1 of RFC 1123).  The pattern above is intended to allow
       for current practice in domain name use, and some possible
       future expansion.  It is designed to hold various types of
       domain names, including names used for A or AAAA records
       (host names) and other records, such as SRV records.  Note
       that Internet host names have a stricter syntax (described
       in RFC 952) than the DNS recommendations in RFCs 1034 and
       1123, and that systems that want to store host names in
       schema nodes using the domain-name type are recommended to
       adhere to this stricter standard to ensure interoperability.

       The encoding of DNS names in the DNS protocol is limited
       to 255 characters.  Since the encoding consists of labels
       prefixed by a length bytes and there is a trailing NULL
       byte, only 253 characters can appear in the textual dotted
       notation.

       The description clause of schema nodes using the domain-name
       type MUST describe when and how these names are resolved to
       IP addresses.  Note that the resolution of a domain-name value
       may require to query multiple DNS records (e.g., A for IPv4
       and AAAA for IPv6).  The order of the resolution process and
       which DNS record takes precedence can either be defined
       explicitely or it may depend on the configuration of the
       resolver.

       Domain-name values use the US-ASCII encoding.  Their canonical
       format uses lowercase US-ASCII characters.  Internationalized
       domain names MUST be encoded in punycode as described in RFC
       3492";
     reference
      "RFC  952: DoD Internet Host Table Specification
       RFC 1034: Domain Names - Concepts and Facilities
       RFC 1123: Requirements for Internet Hosts -- Application
                 and Support
       RFC 2782: A DNS RR for specifying the location of services
                 (DNS SRV)
       RFC 3492: Punycode: A Bootstring encoding of Unicode for
                 Internationalized Domain Names in Applications
                 (IDNA)
       RFC 5891: Internationalizing Domain Names in Applications
                 (IDNA): Protocol";
   }

   typedef host {
     type union {
       type inet:ip-address;
       type inet:domain-name;
     }
     description
      "The host type represents either an IP address or a DNS
       domain name.";
   }

   typedef uri {
     type string;
     description
      "The uri type represents a Uniform Resource Identifier
       (URI) as defined by STD 66.

       Objects using the uri type MUST be in US-ASCII encoding,
       and MUST be normalized as described by RFC 3986 Sections
       6.2.1, 6.2.2.1, and 6.2.2.2.  All unnecessary
       percent-encoding is removed, and all case-insensitive
       characters are set to lowercase except for hexadecimal
       digits, which are normalized to uppercase as described in
       Section 6.2.2.1.

       The purpose of this normalization is to help provide
       unique URIs.  Note that this normalization is not
       sufficient to provide uniqueness.  Two URIs that are
       textually distinct after this normalization may still be
       equivalent.

       Objects using the uri type may restrict the schemes that
       they permit.  For example, 'data:' and 'urn:' schemes
       might not be appropriate.

       A zero-length URI is not a valid URI.  This can be used to
       express 'URI absent' where required.

       In the value set and its semantics, this type is equivalent
       to the Uri SMIv2 textual convention defined in RFC 5017.";
     reference
      "RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
       RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
                 Group: Uniform Resource Identifiers (URIs), URLs,
                 and Uniform Resource Names (URNs): Clarifications
                 and Recommendations
       RFC 5017: MIB Textual Conventions for Uniform Resource
                 Identifiers (URIs)";
   }

 }