aboutsummaryrefslogtreecommitdiffstats
path: root/SoftHSMv2/src/lib/test/SymmetricAlgorithmTests.cpp
blob: f301c73fcc53a50ceaa458999b025c35d992ade9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
/*
 * Copyright (c) 2012 SURFnet
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*****************************************************************************
 SymmetricAlgorithmTests.cpp

 Contains test cases for symmetrical algorithms (i.e., AES and DES)
 *****************************************************************************/

#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <climits>
//#include <iomanip>
#include "SymmetricAlgorithmTests.h"

// CKA_TOKEN
const CK_BBOOL ON_TOKEN = CK_TRUE;
const CK_BBOOL IN_SESSION = CK_FALSE;

// CKA_PRIVATE
const CK_BBOOL IS_PRIVATE = CK_TRUE;
const CK_BBOOL IS_PUBLIC = CK_FALSE;

#define NR_OF_BLOCKS_IN_TEST 0x10001

CPPUNIT_TEST_SUITE_REGISTRATION(SymmetricAlgorithmTests);

CK_RV SymmetricAlgorithmTests::generateAesKey(CK_SESSION_HANDLE hSession, CK_BBOOL bToken, CK_BBOOL bPrivate, CK_OBJECT_HANDLE &hKey)
{
	CK_MECHANISM mechanism = { CKM_AES_KEY_GEN, NULL_PTR, 0 };
	CK_ULONG bytes = 16;
	// CK_BBOOL bFalse = CK_FALSE;
	CK_BBOOL bTrue = CK_TRUE;
	CK_ATTRIBUTE keyAttribs[] = {
		{ CKA_TOKEN, &bToken, sizeof(bToken) },
		{ CKA_PRIVATE, &bPrivate, sizeof(bPrivate) },
		{ CKA_ENCRYPT, &bTrue, sizeof(bTrue) },
		{ CKA_DECRYPT, &bTrue, sizeof(bTrue) },
		{ CKA_WRAP, &bTrue, sizeof(bTrue) },
		{ CKA_UNWRAP, &bTrue, sizeof(bTrue) },
		{ CKA_VALUE_LEN, &bytes, sizeof(bytes) },
	};

	hKey = CK_INVALID_HANDLE;
	return CRYPTOKI_F_PTR( C_GenerateKey(hSession, &mechanism,
			     keyAttribs, sizeof(keyAttribs)/sizeof(CK_ATTRIBUTE),
			     &hKey) );
}

#ifndef WITH_FIPS
CK_RV SymmetricAlgorithmTests::generateDesKey(CK_SESSION_HANDLE hSession, CK_BBOOL bToken, CK_BBOOL bPrivate, CK_OBJECT_HANDLE &hKey)
{
	CK_MECHANISM mechanism = { CKM_DES_KEY_GEN, NULL_PTR, 0 };
	// CK_BBOOL bFalse = CK_FALSE;
	CK_BBOOL bTrue = CK_TRUE;
	CK_ATTRIBUTE keyAttribs[] = {
		{ CKA_TOKEN, &bToken, sizeof(bToken) },
		{ CKA_PRIVATE, &bPrivate, sizeof(bPrivate) },
		{ CKA_ENCRYPT, &bTrue, sizeof(bTrue) },
		{ CKA_DECRYPT, &bTrue, sizeof(bTrue) },
	};

	hKey = CK_INVALID_HANDLE;
	return CRYPTOKI_F_PTR( C_GenerateKey(hSession, &mechanism,
			     keyAttribs, sizeof(keyAttribs)/sizeof(CK_ATTRIBUTE),
			     &hKey) );
}

CK_RV SymmetricAlgorithmTests::generateDes2Key(CK_SESSION_HANDLE hSession, CK_BBOOL bToken, CK_BBOOL bPrivate, CK_OBJECT_HANDLE &hKey)
{
	CK_MECHANISM mechanism = { CKM_DES2_KEY_GEN, NULL_PTR, 0 };
	// CK_BBOOL bFalse = CK_FALSE;
	CK_BBOOL bTrue = CK_TRUE;
	CK_ATTRIBUTE keyAttribs[] = {
		{ CKA_TOKEN, &bToken, sizeof(bToken) },
		{ CKA_PRIVATE, &bPrivate, sizeof(bPrivate) },
		{ CKA_ENCRYPT, &bTrue, sizeof(bTrue) },
		{ CKA_DECRYPT, &bTrue, sizeof(bTrue) },
	};

	hKey = CK_INVALID_HANDLE;
	return CRYPTOKI_F_PTR( C_GenerateKey(hSession, &mechanism,
			     keyAttribs, sizeof(keyAttribs)/sizeof(CK_ATTRIBUTE),
			     &hKey) );
}
#endif

CK_RV SymmetricAlgorithmTests::generateDes3Key(CK_SESSION_HANDLE hSession, CK_BBOOL bToken, CK_BBOOL bPrivate, CK_OBJECT_HANDLE &hKey)
{
	CK_MECHANISM mechanism = { CKM_DES3_KEY_GEN, NULL_PTR, 0 };
	// CK_BBOOL bFalse = CK_FALSE;
	CK_BBOOL bTrue = CK_TRUE;
	CK_ATTRIBUTE keyAttribs[] = {
		{ CKA_TOKEN, &bToken, sizeof(bToken) },
		{ CKA_PRIVATE, &bPrivate, sizeof(bPrivate) },
		{ CKA_ENCRYPT, &bTrue, sizeof(bTrue) },
		{ CKA_DECRYPT, &bTrue, sizeof(bTrue) },
	};

	hKey = CK_INVALID_HANDLE;
	return CRYPTOKI_F_PTR( C_GenerateKey(hSession, &mechanism,
			     keyAttribs, sizeof(keyAttribs)/sizeof(CK_ATTRIBUTE),
			     &hKey) );
}

void SymmetricAlgorithmTests::encryptDecrypt(
		const CK_MECHANISM_TYPE mechanismType,
		const size_t blockSize,
		const CK_SESSION_HANDLE hSession,
		const CK_OBJECT_HANDLE hKey,
		const size_t messageSize,
		const bool isSizeOK)
{
	class PartSize {// class to get random size for part
	private:        // we want to know for sure that no part length is causing any problem.
		const int blockSize;
		const unsigned* pRandom;// point to memory with random data. We are using the data to be encrypted.
		const unsigned* pBack;// point to memory where random data ends.
		int current;// the current size.
	public:
		PartSize(
				const int _blockSize,
				const std::vector<CK_BYTE>* pvData) :
					blockSize(_blockSize),
					pRandom((const unsigned*)&pvData->front()),
					pBack((const unsigned*)&pvData->back()),
					current(blockSize*4){};
		int getCurrent() {// current part size
			return current;
		}
		int getNext() {// get next part size.
			// Check if we do not have more random data
			if ((pRandom+sizeof(unsigned)-1) > pBack) {
				current = blockSize*4;
				return current;
			}
			const unsigned random(*(pRandom++));
			// Bit shift to handle 32- and 64-bit systems.
			// Just want a simple random part length,
			// not a perfect random number (bit shifting will
			// give some loss of precision).
			current = ((unsigned long)random >> 20)*blockSize*0x100/(UINT_MAX >> 20) + 1;
			//std::cout << "New random " << std::hex << random << " current " << std::hex << std::setfill('0') << std::setw(4) << current << " block size " << std::hex << blockSize << std::endl;
			return current;
		}
	};

	const std::vector<CK_BYTE> vData(messageSize);
	std::vector<CK_BYTE> vEncryptedData;
	std::vector<CK_BYTE> vEncryptedDataParted;
	PartSize partSize(blockSize, &vData);

	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, CRYPTOKI_F_PTR( C_GenerateRandom(hSession, (CK_BYTE_PTR)&vData.front(), messageSize) ) );

	const CK_MECHANISM mechanism = { mechanismType, NULL_PTR, 0 };
	CK_MECHANISM_PTR pMechanism((CK_MECHANISM_PTR)&mechanism);
	CK_AES_CTR_PARAMS ctrParams =
	{
		32,
		{
			0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00,
			0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
		}
	};
	CK_BYTE gcmIV[] = {
		0xCA, 0xFE, 0xBA, 0xBE, 0xFA, 0xCE,
		0xDB, 0xAD, 0xDE, 0xCA, 0xF8, 0x88
	};
	CK_BYTE gcmAAD[] = {
		0xFE, 0xED, 0xFA, 0xCE, 0xDE, 0xAD, 0xBE, 0xEF,
		0xFE, 0xED, 0xFA, 0xCE, 0xDE, 0xAD, 0xBE, 0xEF,
		0xAB, 0xAD, 0xDA, 0xD2
	};
	CK_GCM_PARAMS gcmParams =
	{
		&gcmIV[0],
		sizeof(gcmIV),
		sizeof(gcmIV)*8,
		&gcmAAD[0],
		sizeof(gcmAAD),
		16*8
	};

	switch (mechanismType)
	{
		case CKM_DES_CBC:
		case CKM_DES_CBC_PAD:
		case CKM_DES3_CBC:
		case CKM_DES3_CBC_PAD:
		case CKM_AES_CBC:
		case CKM_AES_CBC_PAD:
			pMechanism->pParameter = (CK_VOID_PTR)&vData.front();
			pMechanism->ulParameterLen = blockSize;
			break;
		case CKM_AES_CTR:
			pMechanism->pParameter = &ctrParams;
			pMechanism->ulParameterLen = sizeof(ctrParams);
			break;
		case CKM_AES_GCM:
			pMechanism->pParameter = &gcmParams;
			pMechanism->ulParameterLen = sizeof(gcmParams);
			break;
		default:
			break;
	}

	// Single-part encryption
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, CRYPTOKI_F_PTR( C_EncryptInit(hSession,pMechanism,hKey) ) );
	{
		CK_ULONG ulEncryptedDataLen;
		const CK_RV rv( CRYPTOKI_F_PTR( C_Encrypt(hSession,(CK_BYTE_PTR)&vData.front(),messageSize,NULL_PTR,&ulEncryptedDataLen) ) );
		if ( isSizeOK ) {
			CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
			vEncryptedData.resize(ulEncryptedDataLen);
			CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, CRYPTOKI_F_PTR( C_Encrypt(hSession,(CK_BYTE_PTR)&vData.front(),messageSize,&vEncryptedData.front(),&ulEncryptedDataLen) ) );
			vEncryptedData.resize(ulEncryptedDataLen);
		} else {
			CPPUNIT_ASSERT_EQUAL_MESSAGE("C_Encrypt should fail with C_CKR_DATA_LEN_RANGE", (CK_RV)CKR_DATA_LEN_RANGE, rv);
			vEncryptedData = vData;
		}
	}

	// Multi-part encryption
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, CRYPTOKI_F_PTR( C_EncryptInit(hSession,pMechanism,hKey) ) );

	for ( std::vector<CK_BYTE>::const_iterator i(vData.begin()); i<vData.end(); i+=partSize.getCurrent() ) {
		const CK_ULONG lPartLen( i+partSize.getNext()<vData.end() ? partSize.getCurrent() : vData.end()-i );
		CK_ULONG ulEncryptedPartLen;
		CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, CRYPTOKI_F_PTR( C_EncryptUpdate(hSession,(CK_BYTE_PTR)&(*i),lPartLen,NULL_PTR,&ulEncryptedPartLen) ) );
		const size_t oldSize( vEncryptedDataParted.size() );
		vEncryptedDataParted.resize(oldSize+ulEncryptedPartLen);
		CK_BYTE dummy;
		const CK_BYTE_PTR pEncryptedPart( ulEncryptedPartLen>0 ? &vEncryptedDataParted.at(oldSize) : &dummy );
		CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, CRYPTOKI_F_PTR( C_EncryptUpdate(hSession,(CK_BYTE_PTR)&(*i),lPartLen,pEncryptedPart,&ulEncryptedPartLen) ) );
		vEncryptedDataParted.resize(oldSize+ulEncryptedPartLen);
	}
	{
		CK_ULONG ulLastEncryptedPartLen;
		const CK_RV rv( CRYPTOKI_F_PTR( C_EncryptFinal(hSession,NULL_PTR,&ulLastEncryptedPartLen) ) );
		if ( isSizeOK ) {
			CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
			const size_t oldSize( vEncryptedDataParted.size() );
			CK_BYTE dummy;
			vEncryptedDataParted.resize(oldSize+ulLastEncryptedPartLen);
			const CK_BYTE_PTR pLastEncryptedPart( ulLastEncryptedPartLen>0 ? &vEncryptedDataParted.at(oldSize) : &dummy );
			CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, CRYPTOKI_F_PTR( C_EncryptFinal(hSession,pLastEncryptedPart,&ulLastEncryptedPartLen) ) );
			vEncryptedDataParted.resize(oldSize+ulLastEncryptedPartLen);
		} else {
			CPPUNIT_ASSERT_EQUAL_MESSAGE("C_EncryptFinal should fail with C_CKR_DATA_LEN_RANGE", (CK_RV)CKR_DATA_LEN_RANGE, rv);
			vEncryptedDataParted = vData;
		}
	}

	// Single-part decryption
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, CRYPTOKI_F_PTR( C_DecryptInit(hSession,pMechanism,hKey) ) );

	{
		CK_ULONG ulDataLen;
		const CK_RV rv( CRYPTOKI_F_PTR( C_Decrypt(hSession,&vEncryptedData.front(),vEncryptedData.size(),NULL_PTR,&ulDataLen) ) );
		if ( isSizeOK ) {
			CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
			std::vector<CK_BYTE> vDecryptedData(ulDataLen);
			CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, CRYPTOKI_F_PTR( C_Decrypt(hSession,&vEncryptedData.front(),vEncryptedData.size(),&vDecryptedData.front(),&ulDataLen) ) );
			vDecryptedData.resize(ulDataLen);
			CPPUNIT_ASSERT_MESSAGE("C_Encrypt C_Decrypt does not give the original", vData==vDecryptedData);
		} else {
			CPPUNIT_ASSERT_EQUAL_MESSAGE( "C_Decrypt should fail with CKR_ENCRYPTED_DATA_LEN_RANGE", (CK_RV)CKR_ENCRYPTED_DATA_LEN_RANGE, rv );
		}
	}

	// Multi-part decryption
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, CRYPTOKI_F_PTR( C_DecryptInit(hSession,pMechanism,hKey) ) );
	{
		std::vector<CK_BYTE> vDecryptedData;
		CK_BYTE dummy;
		for ( std::vector<CK_BYTE>::iterator i(vEncryptedDataParted.begin()); i<vEncryptedDataParted.end(); i+=partSize.getCurrent()) {
			const CK_ULONG ulPartLen( i+partSize.getNext()<vEncryptedDataParted.end() ? partSize.getCurrent() : vEncryptedDataParted.end()-i );
			CK_ULONG ulDecryptedPartLen;
			CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, CRYPTOKI_F_PTR( C_DecryptUpdate(hSession,&(*i),ulPartLen,NULL_PTR,&ulDecryptedPartLen) ) );
			const size_t oldSize( vDecryptedData.size() );
			vDecryptedData.resize(oldSize+ulDecryptedPartLen);
			const CK_BYTE_PTR pDecryptedPart( ulDecryptedPartLen>0 ? &vDecryptedData.at(oldSize) : &dummy );
			CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, CRYPTOKI_F_PTR( C_DecryptUpdate(hSession,&(*i),ulPartLen,pDecryptedPart,&ulDecryptedPartLen) ) );
			vDecryptedData.resize(oldSize+ulDecryptedPartLen);
		}
		{
			CK_ULONG ulLastPartLen;
			const CK_RV rv( CRYPTOKI_F_PTR( C_DecryptFinal(hSession,NULL_PTR,&ulLastPartLen) ) );
			if ( isSizeOK ) {
				CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
				const size_t oldSize( vDecryptedData.size() );
				vDecryptedData.resize(oldSize+ulLastPartLen);
				const CK_BYTE_PTR pLastPart( ulLastPartLen>0 ? &vDecryptedData.at(oldSize) : &dummy );
				CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, CRYPTOKI_F_PTR( C_DecryptFinal(hSession,pLastPart,&ulLastPartLen) ) );
				vDecryptedData.resize(oldSize+ulLastPartLen);
				CPPUNIT_ASSERT_MESSAGE("C_EncryptUpdate/C_EncryptFinal C_DecryptUpdate/C_DecryptFinal does not give the original", vData==vDecryptedData);
			} else {
				CPPUNIT_ASSERT_EQUAL_MESSAGE( "C_EncryptFinal should fail with CKR_ENCRYPTED_DATA_LEN_RANGE", (CK_RV)CKR_ENCRYPTED_DATA_LEN_RANGE, rv );
			}
		}
	}
}

CK_RV SymmetricAlgorithmTests::generateRsaPrivateKey(CK_SESSION_HANDLE hSession, CK_BBOOL bToken, CK_BBOOL bPrivate, CK_OBJECT_HANDLE &hKey)
{
	CK_MECHANISM mechanism = { CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0 };
	CK_ULONG bits = 1536;
	CK_BYTE pubExp[] = {0x01, 0x00, 0x01};
	CK_BYTE subject[] = { 0x12, 0x34 }; // dummy
	CK_BYTE id[] = { 123 } ; // dummy
	CK_BBOOL bFalse = CK_FALSE;
	CK_BBOOL bTrue = CK_TRUE;
	CK_ATTRIBUTE pubAttribs[] = {
		{ CKA_TOKEN, &bToken, sizeof(bToken) },
		{ CKA_PRIVATE, &bPrivate, sizeof(bPrivate) },
		{ CKA_ENCRYPT, &bFalse, sizeof(bFalse) },
		{ CKA_VERIFY, &bTrue, sizeof(bTrue) },
		{ CKA_WRAP, &bFalse, sizeof(bFalse) },
		{ CKA_MODULUS_BITS, &bits, sizeof(bits) },
		{ CKA_PUBLIC_EXPONENT, &pubExp[0], sizeof(pubExp) }
	};
	CK_ATTRIBUTE privAttribs[] = {
		{ CKA_TOKEN, &bToken, sizeof(bToken) },
		{ CKA_PRIVATE, &bPrivate, sizeof(bPrivate) },
		{ CKA_SUBJECT, &subject[0], sizeof(subject) },
		{ CKA_ID, &id[0], sizeof(id) },
		{ CKA_SENSITIVE, &bTrue, sizeof(bTrue) },
		{ CKA_DECRYPT, &bFalse, sizeof(bFalse) },
		{ CKA_SIGN, &bTrue, sizeof(bTrue) },
		{ CKA_UNWRAP, &bFalse, sizeof(bFalse) },
		{ CKA_SENSITIVE, &bFalse, sizeof(bFalse) },
		{ CKA_EXTRACTABLE, &bTrue, sizeof(bTrue) }
	};

	CK_OBJECT_HANDLE hPub = CK_INVALID_HANDLE;
	hKey = CK_INVALID_HANDLE;
	CK_RV rv;
	rv = CRYPTOKI_F_PTR( C_GenerateKeyPair(hSession, &mechanism,
			       pubAttribs, sizeof(pubAttribs)/sizeof(CK_ATTRIBUTE),
			       privAttribs, sizeof(privAttribs)/sizeof(CK_ATTRIBUTE),
			       &hPub, &hKey) );
	if (hPub != CK_INVALID_HANDLE)
	{
		CRYPTOKI_F_PTR( C_DestroyObject(hSession, hPub) );
	}
	return rv;
}

void SymmetricAlgorithmTests::aesWrapUnwrap(CK_MECHANISM_TYPE mechanismType, CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey)
{
	CK_MECHANISM mechanism = { mechanismType, NULL_PTR, 0 };
	CK_BBOOL bFalse = CK_FALSE;
	CK_BBOOL bTrue = CK_TRUE;
	CK_OBJECT_CLASS secretClass = CKO_SECRET_KEY;
	CK_KEY_TYPE genKeyType = CKK_GENERIC_SECRET;
	CK_BYTE keyPtr[128];
	CK_ULONG keyLen =
		mechanismType == CKM_AES_KEY_WRAP_PAD ? 125UL : 128UL;
	CK_ATTRIBUTE attribs[] = {
		{ CKA_EXTRACTABLE, &bFalse, sizeof(bFalse) },
		{ CKA_CLASS, &secretClass, sizeof(secretClass) },
		{ CKA_KEY_TYPE, &genKeyType, sizeof(genKeyType) },
		{ CKA_TOKEN, &bFalse, sizeof(bFalse) },
		{ CKA_PRIVATE, &bTrue, sizeof(bTrue) },
		{ CKA_SENSITIVE, &bTrue, sizeof(bTrue) }, // Wrapping is allowed even on sensitive objects
		{ CKA_VALUE, keyPtr, keyLen }
	};
	CK_OBJECT_HANDLE hSecret;
	CK_RV rv;

	rv = CRYPTOKI_F_PTR( C_GenerateRandom(hSession, keyPtr, keyLen) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	hSecret = CK_INVALID_HANDLE;
	rv = CRYPTOKI_F_PTR( C_CreateObject(hSession, attribs, sizeof(attribs)/sizeof(CK_ATTRIBUTE), &hSecret) );
	CPPUNIT_ASSERT(rv == CKR_OK);
	CPPUNIT_ASSERT(hSecret != CK_INVALID_HANDLE);

	CK_BYTE_PTR wrappedPtr = NULL_PTR;
	CK_ULONG wrappedLen = 0UL;
	CK_ULONG zero = 0UL;
	CK_ULONG rndKeyLen = keyLen;
	if (mechanismType == CKM_AES_KEY_WRAP_PAD)
		rndKeyLen =  (keyLen + 7) & ~7;
	rv = CRYPTOKI_F_PTR( C_WrapKey(hSession, &mechanism, hKey, hSecret, wrappedPtr, &wrappedLen) );
	CPPUNIT_ASSERT(rv == CKR_KEY_UNEXTRACTABLE);
	rv = CRYPTOKI_F_PTR( C_DestroyObject(hSession, hSecret) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	attribs[0].pValue = &bTrue;

	hSecret = CK_INVALID_HANDLE;
	rv = CRYPTOKI_F_PTR( C_CreateObject(hSession, attribs, sizeof(attribs)/sizeof(CK_ATTRIBUTE), &hSecret) );
	CPPUNIT_ASSERT(rv == CKR_OK);
	CPPUNIT_ASSERT(hSecret != CK_INVALID_HANDLE);

	// Estimate wrapped length
	rv = CRYPTOKI_F_PTR( C_WrapKey(hSession, &mechanism, hKey, hSecret, wrappedPtr, &wrappedLen) );
	CPPUNIT_ASSERT(rv == CKR_OK);
	CPPUNIT_ASSERT(wrappedLen == rndKeyLen + 8);

	wrappedPtr = (CK_BYTE_PTR) malloc(wrappedLen);
	CPPUNIT_ASSERT(wrappedPtr != NULL_PTR);
	rv = CRYPTOKI_F_PTR( C_WrapKey(hSession, &mechanism, hKey, hSecret, wrappedPtr, &wrappedLen) );
	CPPUNIT_ASSERT(rv == CKR_OK);
	CPPUNIT_ASSERT(wrappedLen == rndKeyLen + 8);

	// This should always fail because wrapped data have to be longer than 0 bytes
	zero = 0;
	rv = CRYPTOKI_F_PTR( C_WrapKey(hSession, &mechanism, hKey, hSecret, wrappedPtr, &zero) );
	CPPUNIT_ASSERT(rv == CKR_BUFFER_TOO_SMALL);

	CK_ATTRIBUTE nattribs[] = {
		{ CKA_CLASS, &secretClass, sizeof(secretClass) },
		{ CKA_KEY_TYPE, &genKeyType, sizeof(genKeyType) },
		{ CKA_TOKEN, &bFalse, sizeof(bFalse) },
		{ CKA_PRIVATE, &bTrue, sizeof(bTrue) },
		{ CKA_ENCRYPT, &bFalse, sizeof(bFalse) },
		{ CKA_DECRYPT, &bTrue, sizeof(bTrue) },
		{ CKA_SIGN, &bFalse,sizeof(bFalse) },
		{ CKA_VERIFY, &bTrue, sizeof(bTrue) }
	};
	CK_OBJECT_HANDLE hNew;

	hNew = CK_INVALID_HANDLE;
	rv = CRYPTOKI_F_PTR( C_UnwrapKey(hSession, &mechanism, hKey, wrappedPtr, wrappedLen, nattribs, sizeof(nattribs)/sizeof(CK_ATTRIBUTE), &hNew) );
	CPPUNIT_ASSERT(rv == CKR_OK);
	CPPUNIT_ASSERT(hNew != CK_INVALID_HANDLE);

	free(wrappedPtr);
	wrappedPtr = NULL_PTR;
	rv = CRYPTOKI_F_PTR( C_DestroyObject(hSession, hSecret) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	CK_OBJECT_HANDLE hRsa;
	hRsa = CK_INVALID_HANDLE;
	rv = generateRsaPrivateKey(hSession, CK_TRUE, CK_TRUE, hRsa);
	CPPUNIT_ASSERT(rv == CKR_OK);
	CPPUNIT_ASSERT(hRsa != CK_INVALID_HANDLE);

	CK_OBJECT_CLASS privateClass = CKO_PRIVATE_KEY;
	CK_KEY_TYPE rsaKeyType = CKK_RSA;
	CK_BYTE_PTR p2Ptr = NULL_PTR;
	CK_ULONG p2Len = 0UL;
	CK_ATTRIBUTE rsaAttribs[] = {
		{ CKA_CLASS, &privateClass, sizeof(privateClass) },
		{ CKA_KEY_TYPE, &rsaKeyType, sizeof(rsaKeyType) },
		{ CKA_PRIME_2, NULL_PTR, 0UL }
	};

	rv = CRYPTOKI_F_PTR( C_GetAttributeValue(hSession, hRsa, rsaAttribs, sizeof(rsaAttribs)/sizeof(CK_ATTRIBUTE)) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	CPPUNIT_ASSERT(rsaAttribs[0].ulValueLen == sizeof(CK_OBJECT_CLASS));
	CPPUNIT_ASSERT(*(CK_OBJECT_CLASS*)rsaAttribs[0].pValue == CKO_PRIVATE_KEY);
	CPPUNIT_ASSERT(rsaAttribs[1].ulValueLen == sizeof(CK_KEY_TYPE));
	CPPUNIT_ASSERT(*(CK_KEY_TYPE*)rsaAttribs[1].pValue == CKK_RSA);

	p2Len = rsaAttribs[2].ulValueLen;
	p2Ptr = (CK_BYTE_PTR) malloc(2 * p2Len);
	CPPUNIT_ASSERT(p2Ptr != NULL_PTR);
	rsaAttribs[2].pValue = p2Ptr;
	rsaAttribs[2].ulValueLen = p2Len;

	rv = CRYPTOKI_F_PTR( C_GetAttributeValue(hSession, hRsa, rsaAttribs, sizeof(rsaAttribs)/sizeof(CK_ATTRIBUTE)) );
	CPPUNIT_ASSERT(rv == CKR_OK);
	CPPUNIT_ASSERT(rsaAttribs[2].ulValueLen == p2Len);

	rv = CRYPTOKI_F_PTR( C_WrapKey(hSession, &mechanism, hKey, hRsa, wrappedPtr, &wrappedLen) );
	CPPUNIT_ASSERT(rv == CKR_OK);
	wrappedPtr = (CK_BYTE_PTR) malloc(wrappedLen);
	CPPUNIT_ASSERT(wrappedPtr != NULL_PTR);
	rv = CRYPTOKI_F_PTR( C_WrapKey(hSession, &mechanism, hKey, hRsa, wrappedPtr, &wrappedLen) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	rv = CRYPTOKI_F_PTR( C_DestroyObject(hSession, hRsa) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	CK_ATTRIBUTE nRsaAttribs[] = {
		{ CKA_CLASS, &privateClass, sizeof(privateClass) },
		{ CKA_KEY_TYPE, &rsaKeyType, sizeof(rsaKeyType) },
		{ CKA_TOKEN, &bFalse, sizeof(bFalse) },
		{ CKA_PRIVATE, &bTrue, sizeof(bTrue) },
		{ CKA_DECRYPT, &bTrue, sizeof(bTrue) },
		{ CKA_SIGN, &bFalse,sizeof(bFalse) },
		{ CKA_UNWRAP, &bTrue, sizeof(bTrue) },
		{ CKA_SENSITIVE, &bFalse, sizeof(bFalse) },
		{ CKA_EXTRACTABLE, &bTrue, sizeof(bTrue) }
	};

	hRsa = CK_INVALID_HANDLE;
	rv = CRYPTOKI_F_PTR( C_UnwrapKey(hSession, &mechanism, hKey, wrappedPtr, wrappedLen, nRsaAttribs, sizeof(nRsaAttribs)/sizeof(CK_ATTRIBUTE), &hRsa) );
	CPPUNIT_ASSERT(rv == CKR_OK);
	CPPUNIT_ASSERT(hRsa != CK_INVALID_HANDLE);

	rsaAttribs[2].pValue = p2Ptr + p2Len;
	rv = CRYPTOKI_F_PTR( C_GetAttributeValue(hSession, hRsa, rsaAttribs, sizeof(rsaAttribs)/sizeof(CK_ATTRIBUTE)) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	CPPUNIT_ASSERT(rsaAttribs[0].ulValueLen == sizeof(CK_OBJECT_CLASS));
	CPPUNIT_ASSERT(*(CK_OBJECT_CLASS*)rsaAttribs[0].pValue == CKO_PRIVATE_KEY);
	CPPUNIT_ASSERT(rsaAttribs[1].ulValueLen == sizeof(CK_KEY_TYPE));
	CPPUNIT_ASSERT(*(CK_KEY_TYPE*)rsaAttribs[1].pValue == CKK_RSA);
	CPPUNIT_ASSERT(rsaAttribs[2].ulValueLen == p2Len);
	CPPUNIT_ASSERT(memcmp(p2Ptr, p2Ptr + p2Len, p2Len) == 0);

	free(wrappedPtr);
	free(p2Ptr);
	rv = CRYPTOKI_F_PTR( C_DestroyObject(hSession, hRsa) );
	CPPUNIT_ASSERT(rv == CKR_OK);
}

void SymmetricAlgorithmTests::testAesEncryptDecrypt()
{
	CK_RV rv;
	// CK_UTF8CHAR sopin[] = SLOT_0_SO1_PIN;
	// CK_ULONG sopinLength = sizeof(sopin) - 1;
	CK_SESSION_HANDLE hSessionRO;
	CK_SESSION_HANDLE hSessionRW;

	// Just make sure that we finalize any previous tests
	CRYPTOKI_F_PTR( C_Finalize(NULL_PTR) );

	// Open read-only session on when the token is not initialized should fail
	rv = CRYPTOKI_F_PTR( C_OpenSession(m_initializedTokenSlotID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR, &hSessionRO) );
	CPPUNIT_ASSERT(rv == CKR_CRYPTOKI_NOT_INITIALIZED);

	// Initialize the library and start the test.
	rv = CRYPTOKI_F_PTR( C_Initialize(NULL_PTR) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Open read-only session
	rv = CRYPTOKI_F_PTR( C_OpenSession(m_initializedTokenSlotID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR, &hSessionRO) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Open read-write session
	rv = CRYPTOKI_F_PTR( C_OpenSession(m_initializedTokenSlotID, CKF_SERIAL_SESSION | CKF_RW_SESSION, NULL_PTR, NULL_PTR, &hSessionRW) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Login USER into the sessions so we can create a private objects
	rv = CRYPTOKI_F_PTR( C_Login(hSessionRO,CKU_USER,m_userPin1,m_userPin1Length) );
	CPPUNIT_ASSERT(rv==CKR_OK);

	CK_OBJECT_HANDLE hKey = CK_INVALID_HANDLE;

	// Generate all combinations of session/token keys.
	rv = generateAesKey(hSessionRW,IN_SESSION,IS_PUBLIC,hKey);
	CPPUNIT_ASSERT(rv == CKR_OK);

	// AES allways have the block size of 128 bits (0x80 bits 0x10 bytes).
	// with padding all message sizes could be encrypted-decrypted.
	// without padding the message size must be a multiple of the block size.
	const int blockSize(0x10);
	encryptDecrypt(CKM_AES_CBC_PAD,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST-1);
	encryptDecrypt(CKM_AES_CBC_PAD,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1);
	encryptDecrypt(CKM_AES_CBC_PAD,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
	encryptDecrypt(CKM_AES_CBC,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
	encryptDecrypt(CKM_AES_CBC,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1, false);
	encryptDecrypt(CKM_AES_ECB,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
	encryptDecrypt(CKM_AES_ECB,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1, false);
	encryptDecrypt(CKM_AES_CTR,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST-1);
	encryptDecrypt(CKM_AES_CTR,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1);
	encryptDecrypt(CKM_AES_CTR,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
#ifdef WITH_AES_GCM
	encryptDecrypt(CKM_AES_GCM,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST-1);
	encryptDecrypt(CKM_AES_GCM,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1);
	encryptDecrypt(CKM_AES_GCM,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
#endif
}

void SymmetricAlgorithmTests::testAesWrapUnwrap()
{
	CK_RV rv;
	// CK_UTF8CHAR sopin[] = SLOT_0_SO1_PIN;
	// CK_ULONG sopinLength = sizeof(sopin) - 1;
	CK_SESSION_HANDLE hSession;

	// Just make sure that we finalize any previous tests
	CRYPTOKI_F_PTR( C_Finalize(NULL_PTR) );

	// Initialize the library and start the test.
	rv = CRYPTOKI_F_PTR( C_Initialize(NULL_PTR) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Open session
	rv = CRYPTOKI_F_PTR( C_OpenSession(m_initializedTokenSlotID, CKF_SERIAL_SESSION | CKF_RW_SESSION, NULL_PTR, NULL_PTR, &hSession) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Login USER into the session so we can create a private object
	rv = CRYPTOKI_F_PTR( C_Login(hSession,CKU_USER,m_userPin1,m_userPin1Length) );
	CPPUNIT_ASSERT(rv==CKR_OK);

	CK_OBJECT_HANDLE hKey = CK_INVALID_HANDLE;

	// Generate a wrapping session public key
	rv = generateAesKey(hSession,IN_SESSION,IS_PUBLIC,hKey);
	CPPUNIT_ASSERT(rv == CKR_OK);

	aesWrapUnwrap(CKM_AES_KEY_WRAP, hSession, hKey);
#ifdef HAVE_AES_KEY_WRAP_PAD
	aesWrapUnwrap(CKM_AES_KEY_WRAP_PAD, hSession, hKey);
#endif
}

void SymmetricAlgorithmTests::testDesEncryptDecrypt()
{
	CK_RV rv;
	// CK_UTF8CHAR sopin[] = SLOT_0_SO1_PIN;
	// CK_ULONG sopinLength = sizeof(sopin) - 1;
	CK_SESSION_HANDLE hSessionRO;
	CK_SESSION_HANDLE hSessionRW;

	// Just make sure that we finalize any previous tests
	CRYPTOKI_F_PTR( C_Finalize(NULL_PTR) );

	// Open read-only session on when the token is not initialized should fail
	rv = CRYPTOKI_F_PTR( C_OpenSession(m_initializedTokenSlotID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR, &hSessionRO) );
	CPPUNIT_ASSERT(rv == CKR_CRYPTOKI_NOT_INITIALIZED);

	// Initialize the library and start the test.
	rv = CRYPTOKI_F_PTR( C_Initialize(NULL_PTR) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Open read-only session
	rv = CRYPTOKI_F_PTR( C_OpenSession(m_initializedTokenSlotID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR, &hSessionRO) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Open read-write session
	rv = CRYPTOKI_F_PTR( C_OpenSession(m_initializedTokenSlotID, CKF_SERIAL_SESSION | CKF_RW_SESSION, NULL_PTR, NULL_PTR, &hSessionRW) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Login USER into the sessions so we can create a private objects
	rv = CRYPTOKI_F_PTR( C_Login(hSessionRO,CKU_USER,m_userPin1,m_userPin1Length) );
	CPPUNIT_ASSERT(rv==CKR_OK);

	// 3DES and DES always have the block size of 64 bits (0x40 bits 0x8 bytes).
	// with padding all message sizes could be encrypted-decrypted.
	// without padding the message size must be a multiple of the block size.
	const int blockSize(0x8);

#ifndef WITH_FIPS
	CK_OBJECT_HANDLE hKey = CK_INVALID_HANDLE;

	// Generate all combinations of session/token keys.
	rv = generateDesKey(hSessionRW,IN_SESSION,IS_PUBLIC,hKey);
	CPPUNIT_ASSERT(rv == CKR_OK);

	encryptDecrypt(CKM_DES_CBC_PAD,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST-1);
	encryptDecrypt(CKM_DES_CBC_PAD,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1);
	encryptDecrypt(CKM_DES_CBC_PAD,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
	encryptDecrypt(CKM_DES_CBC,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
	encryptDecrypt(CKM_DES_CBC,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1, false);
	encryptDecrypt(CKM_DES_ECB,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
	encryptDecrypt(CKM_DES_ECB,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1, false);

	CK_OBJECT_HANDLE hKey2 = CK_INVALID_HANDLE;

	// Generate all combinations of session/token keys.
	rv = generateDes2Key(hSessionRW,IN_SESSION,IS_PUBLIC,hKey2);
	CPPUNIT_ASSERT(rv == CKR_OK);

	encryptDecrypt(CKM_DES3_CBC_PAD,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST-1);
	encryptDecrypt(CKM_DES3_CBC_PAD,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1);
	encryptDecrypt(CKM_DES3_CBC_PAD,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
	encryptDecrypt(CKM_DES3_CBC,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
	encryptDecrypt(CKM_DES3_CBC,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1, false);
	encryptDecrypt(CKM_DES3_ECB,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
	encryptDecrypt(CKM_DES3_ECB,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1, false);
#endif

	CK_OBJECT_HANDLE hKey3 = CK_INVALID_HANDLE;

	// Generate all combinations of session/token keys.
	rv = generateDes3Key(hSessionRW,IN_SESSION,IS_PUBLIC,hKey3);
	CPPUNIT_ASSERT(rv == CKR_OK);

	encryptDecrypt(CKM_DES3_CBC_PAD,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST-1);
	encryptDecrypt(CKM_DES3_CBC_PAD,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1);
	encryptDecrypt(CKM_DES3_CBC_PAD,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
	encryptDecrypt(CKM_DES3_CBC,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
	encryptDecrypt(CKM_DES3_CBC,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1, false);
	encryptDecrypt(CKM_DES3_ECB,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST);
	encryptDecrypt(CKM_DES3_ECB,blockSize,hSessionRO,hKey,blockSize*NR_OF_BLOCKS_IN_TEST+1, false);
}

void SymmetricAlgorithmTests::testNullTemplate()
{
	CK_RV rv;
	CK_SESSION_HANDLE hSession;
	CK_MECHANISM mechanism1 = { CKM_DES3_KEY_GEN, NULL_PTR, 0 };
	CK_MECHANISM mechanism2 = { CKM_AES_KEY_GEN, NULL_PTR, 0 };
	CK_OBJECT_HANDLE hKey = CK_INVALID_HANDLE;

	// Just make sure that we finalize any previous tests
	CRYPTOKI_F_PTR( C_Finalize(NULL_PTR) );

	// Initialize the library and start the test.
	rv = CRYPTOKI_F_PTR( C_Initialize(NULL_PTR) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Open read-write session
	rv = CRYPTOKI_F_PTR( C_OpenSession(m_initializedTokenSlotID, CKF_SERIAL_SESSION | CKF_RW_SESSION, NULL_PTR, NULL_PTR, &hSession) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Login USER into the sessions so we can create a private objects
	rv = CRYPTOKI_F_PTR( C_Login(hSession, CKU_USER, m_userPin1, m_userPin1Length) );
	CPPUNIT_ASSERT(rv==CKR_OK);

	rv = CRYPTOKI_F_PTR( C_GenerateKey(hSession, &mechanism1, NULL_PTR, 0, &hKey) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	rv = CRYPTOKI_F_PTR( C_DestroyObject(hSession, hKey) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	rv = CRYPTOKI_F_PTR( C_GenerateKey(hSession, &mechanism2, NULL_PTR, 0, &hKey) );
	CPPUNIT_ASSERT(rv == CKR_TEMPLATE_INCOMPLETE);
}

void SymmetricAlgorithmTests::testNonModifiableDesKeyGeneration()
{
	CK_RV rv;
	CK_SESSION_HANDLE hSession;
	CK_MECHANISM mechanism = { CKM_DES3_KEY_GEN, NULL_PTR, 0 };
	CK_OBJECT_HANDLE hKey = CK_INVALID_HANDLE;
	CK_BBOOL bFalse = CK_FALSE;
	CK_BBOOL bTrue = CK_TRUE;
	CK_BBOOL bToken = IN_SESSION;

	CK_ATTRIBUTE keyAttribs[] =
		{
		{ CKA_TOKEN, &bToken, sizeof(bToken) },
		{ CKA_PRIVATE, &bTrue, sizeof(bTrue) },
		{ CKA_MODIFIABLE, &bTrue, sizeof(bTrue) },
		{ CKA_ENCRYPT, &bTrue, sizeof(bTrue) },
		{ CKA_DECRYPT, &bTrue, sizeof(bTrue) },
		{ CKA_WRAP, &bTrue, sizeof(bTrue) }
	};

	// Just make sure that we finalize any previous tests
	CRYPTOKI_F_PTR( C_Finalize(NULL_PTR) );

	// Initialize the library and start the test.
	rv = CRYPTOKI_F_PTR( C_Initialize(NULL_PTR) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Open read-write session
	rv = CRYPTOKI_F_PTR( C_OpenSession(m_initializedTokenSlotID, CKF_SERIAL_SESSION | CKF_RW_SESSION, NULL_PTR, NULL_PTR, &hSession) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Login USER into the sessions so we can create a private objects
	rv = CRYPTOKI_F_PTR( C_Login(hSession, CKU_USER, m_userPin1, m_userPin1Length) );
	CPPUNIT_ASSERT(rv==CKR_OK);

	rv = CRYPTOKI_F_PTR( C_GenerateKey(hSession, &mechanism,
		keyAttribs, sizeof(keyAttribs)/sizeof(CK_ATTRIBUTE),
		&hKey) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	rv = CRYPTOKI_F_PTR( C_DestroyObject(hSession, hKey) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// The C_GenerateKey call failed if CKA_MODIFIABLE was bFalse
	// This was a bug in the SoftHSM implementation
	keyAttribs[2].pValue = &bFalse;
	keyAttribs[2].ulValueLen = sizeof(bFalse);

	rv = CRYPTOKI_F_PTR( C_GenerateKey(hSession, &mechanism,
		keyAttribs, sizeof(keyAttribs) / sizeof(CK_ATTRIBUTE),
		&hKey) );
	// The call would fail with CKR_ATTRIBUTE_READ_ONLY
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Now create a template where the CKA_MODIFIABLE attribute is last in the list
	CK_ATTRIBUTE keyAttribs1[] =
	{
		{ CKA_TOKEN, &bToken, sizeof(bToken) },
		{ CKA_PRIVATE, &bTrue, sizeof(bTrue) },
		{ CKA_ENCRYPT, &bTrue, sizeof(bTrue) },
		{ CKA_DECRYPT, &bTrue, sizeof(bTrue) },
		{ CKA_WRAP, &bTrue, sizeof(bTrue) },
		{ CKA_MODIFIABLE, &bTrue, sizeof(bTrue) }
	};

	rv = CRYPTOKI_F_PTR( C_GenerateKey(hSession, &mechanism,
		keyAttribs1, sizeof(keyAttribs1) / sizeof(CK_ATTRIBUTE),
		&hKey) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Now when CKA_MODIFIABLE is bFalse the key generation succeeds
	keyAttribs1[2].pValue = &bFalse;
	keyAttribs1[2].ulValueLen = sizeof(bFalse);

	rv = CRYPTOKI_F_PTR( C_GenerateKey(hSession, &mechanism,
		keyAttribs1, sizeof(keyAttribs1) / sizeof(CK_ATTRIBUTE),
		&hKey) );
	CPPUNIT_ASSERT(rv == CKR_OK);
}

void SymmetricAlgorithmTests::testCheckValue()
{
	CK_RV rv;
	CK_SESSION_HANDLE hSession;
	CK_MECHANISM mechanism = { CKM_AES_KEY_GEN, NULL_PTR, 0 };
	CK_OBJECT_HANDLE hKey = CK_INVALID_HANDLE;

	// Just make sure that we finalize any previous tests
	CRYPTOKI_F_PTR( C_Finalize(NULL_PTR) );

	// Initialize the library and start the test.
	rv = CRYPTOKI_F_PTR( C_Initialize(NULL_PTR) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Open read-write session
	rv = CRYPTOKI_F_PTR( C_OpenSession(m_initializedTokenSlotID, CKF_SERIAL_SESSION | CKF_RW_SESSION, NULL_PTR, NULL_PTR, &hSession) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Login USER into the sessions so we can create a private objects
	rv = CRYPTOKI_F_PTR( C_Login(hSession, CKU_USER, m_userPin1, m_userPin1Length) );
	CPPUNIT_ASSERT(rv==CKR_OK);

	CK_ULONG bytes = 16;
	CK_BYTE pCheckValue[] = { 0x2b, 0x84, 0xf6 };
	CK_BBOOL bFalse = CK_FALSE;
	CK_BBOOL bTrue = CK_TRUE;
	CK_ATTRIBUTE keyAttribs[] = {
		{ CKA_TOKEN, &bFalse, sizeof(bFalse) },
		{ CKA_PRIVATE, &bTrue, sizeof(bTrue) },
		{ CKA_ENCRYPT, &bTrue, sizeof(bTrue) },
		{ CKA_DECRYPT, &bTrue, sizeof(bTrue) },
		{ CKA_WRAP, &bTrue, sizeof(bTrue) },
		{ CKA_UNWRAP, &bTrue, sizeof(bTrue) },
		{ CKA_VALUE_LEN, &bytes, sizeof(bytes) },
		{ CKA_CHECK_VALUE, &pCheckValue, sizeof(pCheckValue) }
	};

	rv = CRYPTOKI_F_PTR( C_GenerateKey(hSession, &mechanism,
			   keyAttribs, 8,
			   &hKey) );
	CPPUNIT_ASSERT(rv == CKR_ATTRIBUTE_VALUE_INVALID);

	keyAttribs[7].ulValueLen = 0;
	rv = CRYPTOKI_F_PTR( C_GenerateKey(hSession, &mechanism,
			   keyAttribs, 8,
			   &hKey) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	CK_ATTRIBUTE checkAttrib[] = {
		{ CKA_CHECK_VALUE, &pCheckValue, sizeof(pCheckValue) }
	};

	rv = CRYPTOKI_F_PTR( C_GetAttributeValue(hSession, hKey, checkAttrib, 1) );
	CPPUNIT_ASSERT(rv == CKR_OK);
	CPPUNIT_ASSERT(checkAttrib[0].ulValueLen == 0);

	rv = CRYPTOKI_F_PTR( C_DestroyObject(hSession, hKey) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	rv = CRYPTOKI_F_PTR( C_GenerateKey(hSession, &mechanism,
			   keyAttribs, 7,
			   &hKey) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	checkAttrib[0].ulValueLen = sizeof(pCheckValue);
	rv = CRYPTOKI_F_PTR( C_GetAttributeValue(hSession, hKey, checkAttrib, 1) );
	CPPUNIT_ASSERT(rv == CKR_OK);
	CPPUNIT_ASSERT(checkAttrib[0].ulValueLen == 3);

	rv = CRYPTOKI_F_PTR( C_DestroyObject(hSession, hKey) );
	CPPUNIT_ASSERT(rv == CKR_OK);
}

void SymmetricAlgorithmTests::testAesCtrOverflow()
{
	CK_RV rv;
	CK_SESSION_HANDLE hSession;

	// Just make sure that we finalize any previous tests
	CRYPTOKI_F_PTR( C_Finalize(NULL_PTR) );

	// Initialize the library and start the test.
	rv = CRYPTOKI_F_PTR( C_Initialize(NULL_PTR) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Open read-write session
	rv = CRYPTOKI_F_PTR( C_OpenSession(m_initializedTokenSlotID, CKF_SERIAL_SESSION | CKF_RW_SESSION, NULL_PTR, NULL_PTR, &hSession) );
	CPPUNIT_ASSERT(rv == CKR_OK);

	// Login USER into the session so we can create a private objects
	rv = CRYPTOKI_F_PTR( C_Login(hSession,CKU_USER,m_userPin1,m_userPin1Length) );
	CPPUNIT_ASSERT(rv==CKR_OK);

	CK_OBJECT_HANDLE hKey = CK_INVALID_HANDLE;

	// Generate a session keys.
	rv = generateAesKey(hSession,IN_SESSION,IS_PUBLIC,hKey);
	CPPUNIT_ASSERT(rv == CKR_OK);

	CK_MECHANISM mechanism = { CKM_AES_CTR, NULL_PTR, 0 };
	CK_AES_CTR_PARAMS ctrParams =
	{
		2,
		{
			0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00,
			0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
		}
	};
	mechanism.pParameter = &ctrParams;
	mechanism.ulParameterLen = sizeof(ctrParams);

	CK_BYTE plainText[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
				0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
				0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
				0x00 };
	std::vector<CK_BYTE> vEncryptedData;
	std::vector<CK_BYTE> vEncryptedDataParted;
	std::vector<CK_BYTE> vDecryptedData;
	std::vector<CK_BYTE> vDecryptedDataParted;
	CK_ULONG ulEncryptedDataLen;
	CK_ULONG ulEncryptedPartLen;
	CK_ULONG ulDataLen;
	CK_ULONG ulDataPartLen;

	// Single-part encryption
	rv = CRYPTOKI_F_PTR( C_EncryptInit(hSession,&mechanism,hKey) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	rv = CRYPTOKI_F_PTR( C_Encrypt(hSession,plainText,sizeof(plainText),NULL_PTR,&ulEncryptedDataLen) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_DATA_LEN_RANGE, rv );
	rv = CRYPTOKI_F_PTR( C_EncryptInit(hSession,&mechanism,hKey) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	rv = CRYPTOKI_F_PTR( C_Encrypt(hSession,plainText,sizeof(plainText)-1,NULL_PTR,&ulEncryptedDataLen) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	vEncryptedData.resize(ulEncryptedDataLen);
	rv = CRYPTOKI_F_PTR( C_Encrypt(hSession,plainText,sizeof(plainText)-1,&vEncryptedData.front(),&ulEncryptedDataLen) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	vEncryptedData.resize(ulEncryptedDataLen);

	// Multi-part encryption
	rv = CRYPTOKI_F_PTR( C_EncryptInit(hSession,&mechanism,hKey) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	rv = CRYPTOKI_F_PTR( C_EncryptUpdate(hSession,plainText,sizeof(plainText)-1,NULL_PTR,&ulEncryptedPartLen) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	vEncryptedDataParted.resize(ulEncryptedPartLen);
	rv = CRYPTOKI_F_PTR( C_EncryptUpdate(hSession,plainText,sizeof(plainText)-1,&vEncryptedDataParted.front(),&ulEncryptedPartLen) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	vEncryptedDataParted.resize(ulEncryptedPartLen);
	rv = CRYPTOKI_F_PTR( C_EncryptUpdate(hSession,plainText,1,NULL_PTR,&ulEncryptedPartLen) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_DATA_LEN_RANGE, rv );

	// Single-part decryption
	rv = CRYPTOKI_F_PTR( C_DecryptInit(hSession,&mechanism,hKey) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	rv = CRYPTOKI_F_PTR( C_Decrypt(hSession,&vEncryptedData.front(),vEncryptedData.size()+1,NULL_PTR,&ulDataLen) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_ENCRYPTED_DATA_LEN_RANGE, rv );
	rv = CRYPTOKI_F_PTR( C_DecryptInit(hSession,&mechanism,hKey) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	rv = CRYPTOKI_F_PTR( C_Decrypt(hSession,&vEncryptedData.front(),vEncryptedData.size(),NULL_PTR,&ulDataLen) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	vDecryptedData.resize(ulDataLen);
	rv = CRYPTOKI_F_PTR( C_Decrypt(hSession,&vEncryptedData.front(),vEncryptedData.size(),&vDecryptedData.front(),&ulDataLen) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	vDecryptedData.resize(ulDataLen);

	// Multi-part decryption
	rv = CRYPTOKI_F_PTR( C_DecryptInit(hSession,&mechanism,hKey) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	rv = CRYPTOKI_F_PTR( C_DecryptUpdate(hSession,&vEncryptedData.front(),vEncryptedData.size(),NULL_PTR,&ulDataPartLen) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	vDecryptedDataParted.resize(ulDataPartLen);
	rv = CRYPTOKI_F_PTR( C_DecryptUpdate(hSession,&vEncryptedData.front(),vEncryptedData.size(),&vDecryptedDataParted.front(),&ulDataPartLen) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_OK, rv );
	vDecryptedDataParted.resize(ulDataPartLen);
	rv = CRYPTOKI_F_PTR( C_DecryptUpdate(hSession,&vEncryptedData.front(),1,NULL_PTR,&ulDataPartLen) );
	CPPUNIT_ASSERT_EQUAL( (CK_RV)CKR_ENCRYPTED_DATA_LEN_RANGE, rv );
}