summaryrefslogtreecommitdiffstats
path: root/scripts/api_squad_offline.py
blob: 1c98a10a5cd0267c7f4f61d135768fbbf00f3eec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#!/usr/bin/env python
# coding: utf-8

# auther = 'liuzhiyong'
# date = 20201204


from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import datetime
import threading
import time
from flask import Flask, abort, request, jsonify
from concurrent.futures import ThreadPoolExecutor

import collections
import math
import os
import random
import modeling
import optimization
import tokenization
import six
import tensorflow as tf
import sys
from api_squad import *
from global_setting import *
from global_setting import FLAGS_bert_config_file, FLAGS_vocab_file, FLAGS_init_checkpoint_squad, questions

os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(CUDA_VISIBLE_DEVICES)

app = Flask(__name__)

def serving_input_fn():
    input_ids = tf.placeholder(tf.int32, [None, FLAGS_max_seq_length], name='input_ids')
    unique_id = tf.placeholder(tf.int32,[None])
    input_mask = tf.placeholder(tf.int32, [None, FLAGS_max_seq_length], name='input_mask')
    segment_ids = tf.placeholder(tf.int32, [None, FLAGS_max_seq_length], name='segment_ids')
    input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
        'input_ids': input_ids,
        'input_mask': input_mask,
        'segment_ids': segment_ids,
        'unique_ids': unique_id,
        })()
    return input_fn

def main(FLAGS_output_dir, FLAGS_init_checkpoint_squad, FLAGS_export_dir, FLAGS_predict_file=None, FLAGS_train_file=None, FLAGS_do_predict=False,
         FLAGS_do_train=False, FLAGS_train_batch_size=16, FLAGS_predict_batch_size=8, FLAGS_learning_rate=5e-5, FLAGS_num_train_epochs=3.0,
         FLAGS_max_answer_length=100, FLAGS_max_query_length=64, FLAGS_version_2_with_negative=False):
    
    tf.logging.set_verbosity(tf.logging.INFO)

    bert_config = modeling.BertConfig.from_json_file(FLAGS_bert_config_file)

    validate_flags_or_throw(bert_config)

    tf.gfile.MakeDirs(FLAGS_output_dir)


    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS_vocab_file, do_lower_case=FLAGS_do_lower_case)

    tpu_cluster_resolver = None
    if FLAGS_use_tpu and FLAGS_tpu_name:
        tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
            FLAGS_tpu_name, zone=FLAGS_tpu_zone, project=FLAGS_gcp_project)
   
    is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
    run_config = tf.contrib.tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        master=FLAGS_master,
        model_dir=FLAGS_output_dir,
        save_checkpoints_steps=FLAGS_save_checkpoints_steps,
        tpu_config=tf.contrib.tpu.TPUConfig(
            iterations_per_loop=FLAGS_iterations_per_loop,
            num_shards=FLAGS_num_tpu_cores,
            per_host_input_for_training=is_per_host))

    train_examples = None
    num_train_steps = None
    num_warmup_steps = None

    if FLAGS_do_train:
        train_examples = read_squad_examples(
            input_file=FLAGS_train_file, is_training=True,questions = questions,FLAGS_version_2_with_negative = FLAGS_version_2_with_negative)
     
        num_train_steps = int(
            len(train_examples) / FLAGS_train_batch_size * FLAGS_num_train_epochs)
        num_warmup_steps = int(num_train_steps * FLAGS_warmup_proportion)

        # Pre-shuffle the input to avoid having to make a very large shuffle
        # buffer in in the `input_fn`.
        rng = random.Random(12345)
        rng.shuffle(train_examples)

    model_fn = model_fn_builder(
        bert_config=bert_config,
        init_checkpoint=FLAGS_init_checkpoint_squad,
        learning_rate=FLAGS_learning_rate,
        num_train_steps=num_train_steps,
        num_warmup_steps=num_warmup_steps,
        use_tpu=FLAGS_use_tpu,
        use_one_hot_embeddings=FLAGS_use_tpu)

    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    estimator = tf.contrib.tpu.TPUEstimator(
        use_tpu=FLAGS_use_tpu,
        model_fn=model_fn,
        config=run_config,
        train_batch_size=FLAGS_train_batch_size,
        predict_batch_size=FLAGS_predict_batch_size)

    if FLAGS_do_train:
        # We write to a temporary file to avoid storing very large constant tensors
        # in memory.
        train_writer = FeatureWriter(
            filename=os.path.join(FLAGS_output_dir, "train.tf_record"),
            is_training=True)
        convert_examples_to_features(
            examples=train_examples,
            tokenizer=tokenizer,
            max_seq_length=FLAGS_max_seq_length,
            doc_stride=FLAGS_doc_stride,
            max_query_length=FLAGS_max_query_length,
            is_training=True,
            output_fn=train_writer.process_feature)
        train_writer.close()

        tf.logging.info("***** Running training *****")
        tf.logging.info("  Num orig examples = %d", len(train_examples))
        tf.logging.info("  Num split examples = %d", train_writer.num_features)
        tf.logging.info("  Batch size = %d", FLAGS_train_batch_size)
        tf.logging.info("  Num steps = %d", num_train_steps)
        del train_examples

        train_input_fn = input_fn_builder(
            input_file=train_writer.filename,
            seq_length=FLAGS_max_seq_length,
            is_training=True,
            drop_remainder=True)
        estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
        estimator._export_to_tpu = False
        estimator.export_savedmodel(FLAGS_export_dir, serving_input_fn)
    return 'success'


class AI2Flask:

    def __init__(self, port=5000, workers=4):
        self.app = app
        self.port = port
        p = ThreadPoolExecutor(max_workers=workers)
        threads_mapping = {}

        def check_threads():
            flag = False
            pop_keys = set()
            if len(threads_mapping) >= workers:
                for k, v in threads_mapping.items():
                    if v.running():
                        flag = True
                    else:
                        pop_keys.add(k)

            for k in pop_keys:
                threads_mapping.pop(k)

            return flag

        @app.route('/api/offline/train', methods=['POST'])
        def text_analyse():
            if not request.json or not 'task_id' in request.json:
                abort(400)
            if check_threads():
                return jsonify({"Des": "Task list is full. Can not submit new task! ", "Result": "Failed to submit the training task ", "Status": "ERROR"})

            else:
                try:
                    FLAGS_train_batch_size = request.json['FLAGS_train_batch_size']
                except:
                    FLAGS_train_batch_size = 16
                try:
                    FLAGS_learning_rate = request.json['FLAGS_learning_rate']
                except:
                    FLAGS_learning_rate = 5e-5
                try:
                    FLAGS_num_train_epochs = request.json['FLAGS_num_train_epochs']
                except:
                    FLAGS_num_train_epochs = 3.0
                try:
                    FLAGS_max_answer_length = request.json['FLAGS_max_answer_length']
                except:
                    FLAGS_max_answer_length = 100
                try:
                    FLAGS_max_query_length = request.json['FLAGS_max_query_length']
                except:
                    FLAGS_max_query_length = 64
                try:
                    FLAGS_version_2_with_negative = request.json['FLAGS_version_2_with_negative']
                except:
                    FLAGS_version_2_with_negative = True

                try:
                    FLAGS_predict_file = None
                    FLAGS_predict_batch_size = 8
                    FLAGS_do_predict = False
                    FLAGS_do_train = True
                    FLAGS_output_dir = request.json['FLAGS_output_dir']
                    FLAGS_train_file = request.json['FLAGS_train_file']
                    FLAGS_export_dir = request.json['FLAGS_export_dir']
                    task_id = request.json['task_id']

                    task = p.submit(main, FLAGS_output_dir, FLAGS_init_checkpoint_squad, FLAGS_export_dir, FLAGS_predict_file, FLAGS_train_file, FLAGS_do_predict,
                                    FLAGS_do_train, FLAGS_train_batch_size, FLAGS_predict_batch_size, FLAGS_learning_rate, FLAGS_num_train_epochs,
                                    FLAGS_max_answer_length, FLAGS_max_query_length, FLAGS_version_2_with_negative)
                    threads_mapping[task_id] = task

                    return jsonify({"message": "Task submitted successfully", "status": "0"})

                except KeyError as e:
                    return jsonify({"Des": 'KeyError: {}'.format(str(e)), "Result": 'None', "Status": "Error"})
                except Exception as e:
                    return jsonify({"Des": str(e), "Result": 'None', "Status": "Error"})

       

        @app.route('/api/offline/status', methods=['POST'])
        def todo_status():
            task_id = request.json['task_id']
            task = threads_mapping.get(task_id, None)
            try:
                if task is None:
                    return jsonify({'Des': 'The task was not found', 'Status': 'ERROR'})
                else:
                    if task.done():
                        print(task.result)
                        if task.result() == 'success':
                            return jsonify({'Des': 'DONE', 'Status': 'OK'})
                        else:
                            return jsonify({'Des': 'Program execution error. Please check the execution log ', 'Status': 'ERROR'})

                    else:
                        return jsonify({'Des': 'RUNNING', 'Status': 'OK'})
            except Exception as e:
                return jsonify({'Des': str(e), 'Status': 'ERROR'})

    def start(self):
        self.app.run(host="0.0.0.0", port=self.port, threaded=True)


if __name__ == '__main__':
    port = sys.argv[1]
    AI2Flask(port=port).start()