aboutsummaryrefslogtreecommitdiffstats
path: root/nlp/scripts/create_squad_features.py
blob: ce274e032ee92a89aa4d8ada09bc5c49a8d8e1cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
#!/usr/bin/env python
# coding: utf-8

# auther = 'liuzhiyong'
# date = 20201204


from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json

import collections
import math
import tokenization
import six
import tensorflow as tf
import requests

from global_setting import _improve_answer_span

version_2_with_negative = True


def get_squad_feature_result(title, text, tokenizer, question, url):

    def make_json(title, text, question):
        res = {}
        res['data'] = []
        data_inside = {}

        data_inside['title'] = title
        data_inside['paragraphs'] = []
        paragraphs_inside = {}
        paragraphs_inside['context'] = text
        paragraphs_inside['qas'] = []
        for ques in question:
            qas_inside = {}
            qas_inside['answers'] = []

            answer_inside = {}

            qas_inside['id'] = ques
            qas_inside['question'] = ques
            qas_inside['answers'].append(answer_inside.copy())
            paragraphs_inside['qas'].append(qas_inside.copy())
        data_inside['paragraphs'].append(paragraphs_inside.copy())

        res['data'].append(data_inside.copy())
        return json.dumps(res)

    def _compute_softmax(scores):
        """Compute softmax probability over raw logits."""
        if not scores:
            return []

        max_score = None
        for score in scores:
            if max_score is None or score > max_score:
                max_score = score

        exp_scores = []
        total_sum = 0.0
        for score in scores:
            x = math.exp(score - max_score)
            exp_scores.append(x)
            total_sum += x

        probs = []
        for score in exp_scores:
            probs.append(score / total_sum)
        return probs

    def get_final_text(pred_text, orig_text, do_lower_case):

        def _strip_spaces(text):
            ns_chars = []
            ns_to_s_map = collections.OrderedDict()
            for (i, c) in enumerate(text):
                if c == " ":
                    continue
                ns_to_s_map[len(ns_chars)] = i
                ns_chars.append(c)
            ns_text = "".join(ns_chars)
            return (ns_text, ns_to_s_map)

        # We first tokenize `orig_text`, strip whitespace from the result
        # and `pred_text`, and check if they are the same length. If they are
        # NOT the same length, the heuristic has failed. If they are the same
        # length, we assume the characters are one-to-one aligned.
        tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)

        tok_text = " ".join(tokenizer.tokenize(orig_text))

        start_position = tok_text.find(pred_text)
        if start_position == -1:
            if 0:
                tf.logging.info(
                    "Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
            return orig_text
        end_position = start_position + len(pred_text) - 1

        (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
        (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

        if len(orig_ns_text) != len(tok_ns_text):
            if 0:
                tf.logging.info("Length not equal after stripping spaces: '%s' vs '%s'",
                                orig_ns_text, tok_ns_text)
            return orig_text

        # We then project the characters in `pred_text` back to `orig_text` using
        # the character-to-character alignment.
        tok_s_to_ns_map = {}
        for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
            tok_s_to_ns_map[tok_index] = i

        orig_start_position = None
        if start_position in tok_s_to_ns_map:
            ns_start_position = tok_s_to_ns_map[start_position]
            if ns_start_position in orig_ns_to_s_map:
                orig_start_position = orig_ns_to_s_map[ns_start_position]

        if orig_start_position is None:
            if 0:
                tf.logging.info("Couldn't map start position")
            return orig_text

        orig_end_position = None
        if end_position in tok_s_to_ns_map:
            ns_end_position = tok_s_to_ns_map[end_position]
            if ns_end_position in orig_ns_to_s_map:
                orig_end_position = orig_ns_to_s_map[ns_end_position]

        if orig_end_position is None:
            if 0:
                tf.logging.info("Couldn't map end position")
            return orig_text

        output_text = orig_text[orig_start_position:(orig_end_position + 1)]
        return output_text

    def _get_best_indexes(logits, n_best_size):

        index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)

        best_indexes = []
        for i in range(len(index_and_score)):
            if i >= n_best_size:
                break
            best_indexes.append(index_and_score[i][0])
        return best_indexes

    RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"])

    def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case):
        """Write final predictions to the json file and log-odds of null if needed."""

        example_index_to_features = collections.defaultdict(list)
        for feature in all_features:
            example_index_to_features[feature.example_index].append(feature)

        unique_id_to_result = {}
        for result in all_results:
            unique_id_to_result[result.unique_id] = result

        _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
            "PrelimPrediction",
            ["feature_index", "start_index", "end_index", "start_logit", "end_logit"])

        all_predictions = collections.OrderedDict()
        all_nbest_json = collections.OrderedDict()
        scores_diff_json = collections.OrderedDict()

        for (example_index, example) in enumerate(all_examples):
            features = example_index_to_features[example_index]

            prelim_predictions = []
            # keep track of the minimum score of null start+end of position 0
            score_null = 1000000  # large and positive
            min_null_feature_index = 0  # the paragraph slice with min mull score
            null_start_logit = 0  # the start logit at the slice with min null score
            null_end_logit = 0  # the end logit at the slice with min null score
            for (feature_index, feature) in enumerate(features):
                result = unique_id_to_result[feature.unique_id]
                start_indexes = _get_best_indexes(result.start_logits, n_best_size)
                end_indexes = _get_best_indexes(result.end_logits, n_best_size)
                # if we could have irrelevant answers, get the min score of irrelevant
                if version_2_with_negative:
                    feature_null_score = result.start_logits[0] + result.end_logits[0]
                    if feature_null_score < score_null:
                        score_null = feature_null_score
                        min_null_feature_index = feature_index
                        null_start_logit = result.start_logits[0]
                        null_end_logit = result.end_logits[0]

                for start_index in start_indexes:
                    for end_index in end_indexes:
                        # We could hypothetically create invalid predictions, e.g., predict
                        # that the start of the span is in the question. We throw out all
                        # invalid predictions.
                        if start_index >= len(feature.tokens):
                            continue
                        if end_index >= len(feature.tokens):
                            continue
                        if start_index not in feature.token_to_orig_map:
                            continue
                        if end_index not in feature.token_to_orig_map:
                            continue
                        if not feature.token_is_max_context.get(start_index, False):
                            continue
                        if end_index < start_index:
                            continue
                        length = end_index - start_index + 1
                        if length > max_answer_length:
                            continue
                        prelim_predictions.append(
                            _PrelimPrediction(
                                feature_index=feature_index,
                                start_index=start_index,
                                end_index=end_index,
                                start_logit=result.start_logits[start_index],
                                end_logit=result.end_logits[end_index]))

            if version_2_with_negative:
                prelim_predictions.append(
                    _PrelimPrediction(
                        feature_index=min_null_feature_index,
                        start_index=0,
                        end_index=0,
                        start_logit=null_start_logit,
                        end_logit=null_end_logit))
            prelim_predictions = sorted(
                prelim_predictions,
                key=lambda x: (x.start_logit + x.end_logit),
                reverse=True)

            _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
                "NbestPrediction", ["text", "start_logit", "end_logit"])

            seen_predictions = {}
            nbest = []
            for pred in prelim_predictions:
                if len(nbest) >= n_best_size:
                    break
                feature = features[pred.feature_index]
                if pred.start_index > 0:  # this is a non-null prediction
                    tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
                    orig_doc_start = feature.token_to_orig_map[pred.start_index]
                    orig_doc_end = feature.token_to_orig_map[pred.end_index]
                    orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
                    tok_text = " ".join(tok_tokens)

                    # De-tokenize WordPieces that have been split off.
                    tok_text = tok_text.replace(" ##", "")
                    tok_text = tok_text.replace("##", "")

                    # Clean whitespace
                    tok_text = tok_text.strip()
                    tok_text = " ".join(tok_text.split())
                    orig_text = " ".join(orig_tokens)

                    final_text = get_final_text(tok_text, orig_text, do_lower_case)
                    if final_text in seen_predictions:
                        continue

                    seen_predictions[final_text] = True
                else:
                    final_text = ""
                    seen_predictions[final_text] = True

                nbest.append(
                    _NbestPrediction(
                        text=final_text,
                        start_logit=pred.start_logit,
                        end_logit=pred.end_logit))

            # if we didn't inlude the empty option in the n-best, inlcude it
            if version_2_with_negative:
                if "" not in seen_predictions:
                    nbest.append(
                        _NbestPrediction(
                            text="", start_logit=null_start_logit,
                            end_logit=null_end_logit))

            # In very rare edge cases we could have no valid predictions. So we
            # just create a nonce prediction in this case to avoid failure.
            if not nbest:
                nbest.append(
                    _NbestPrediction(text="", start_logit=0.0, end_logit=0.0))

            assert len(nbest) >= 1

            total_scores = []
            best_non_null_entry = None
            for entry in nbest:
                total_scores.append(entry.start_logit + entry.end_logit)
                if not best_non_null_entry:
                    if entry.text:
                        best_non_null_entry = entry

            probs = _compute_softmax(total_scores)

            nbest_json = []
            for (i, entry) in enumerate(nbest):
                output = collections.OrderedDict()
                output["text"] = entry.text
                output["probability"] = probs[i]
                output["start_logit"] = entry.start_logit
                output["end_logit"] = entry.end_logit
                nbest_json.append(output)

            assert len(nbest_json) >= 1

            if not version_2_with_negative:
                all_predictions[example.qas_id] = nbest_json[0]["text"]
            else:
                # predict "" iff the null score - the score of best non-null > threshold
                score_diff = score_null - best_non_null_entry.start_logit - (
                    best_non_null_entry.end_logit)
                scores_diff_json[example.qas_id] = score_diff
                if score_diff > 0:
                    all_predictions[example.qas_id] = ""
                else:
                    all_predictions[example.qas_id] = best_non_null_entry.text

            all_nbest_json[example.qas_id] = nbest_json
        return all_predictions

    def create_int_feature(values):

        feature = tf.train.Feature(
            int64_list=tf.train.Int64List(value=list(values)))
        return feature

    class InputFeatures(object):
        """A single set of features of data."""

        def __init__(self,
                     unique_id,
                     example_index,
                     doc_span_index,
                     tokens,
                     token_to_orig_map,
                     token_is_max_context,
                     input_ids,
                     input_mask,
                     segment_ids,
                     start_position=None,
                     end_position=None,
                     is_impossible=None):
            self.unique_id = unique_id
            self.example_index = example_index
            self.doc_span_index = doc_span_index
            self.tokens = tokens
            self.token_to_orig_map = token_to_orig_map
            self.token_is_max_context = token_is_max_context
            self.input_ids = input_ids
            self.input_mask = input_mask
            self.segment_ids = segment_ids
            self.start_position = start_position
            self.end_position = end_position
            self.is_impossible = is_impossible

    def _check_is_max_context(doc_spans, cur_span_index, position):
        """Check if this is the 'max context' doc span for the token."""

        # Because of the sliding window approach taken to scoring documents, a single
        # token can appear in multiple documents. E.g.
        #  Doc: the man went to the store and bought a gallon of milk
        #  Span A: the man went to the
        #  Span B: to the store and bought
        #  Span C: and bought a gallon of
        #  ...
        #
        # Now the word 'bought' will have two scores from spans B and C. We only
        # want to consider the score with "maximum context", which we define as
        # the *minimum* of its left and right context (the *sum* of left and
        # right context will always be the same, of course).
        #
        # In the example the maximum context for 'bought' would be span C since
        # it has 1 left context and 3 right context, while span B has 4 left context
        # and 0 right context.
        best_score = None
        best_span_index = None
        for (span_index, doc_span) in enumerate(doc_spans):
            end = doc_span.start + doc_span.length - 1
            if position < doc_span.start:
                continue
            if position > end:
                continue
            num_left_context = position - doc_span.start
            num_right_context = end - position
            score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
            if best_score is None or score > best_score:
                best_score = score
                best_span_index = span_index

        return cur_span_index == best_span_index

    def convert_examples_to_features(examples, tokenizer, max_seq_length,
                                     doc_stride, max_query_length, is_training):
        """Loads a data file into a list of `InputBatch`s."""

        unique_id = 1000000000
        result = []

        for (example_index, example) in enumerate(examples):
            query_tokens = tokenizer.tokenize(example.question_text)

        if len(query_tokens) > max_query_length:
            query_tokens = query_tokens[0:max_query_length]

        tok_to_orig_index = []
        orig_to_tok_index = []
        all_doc_tokens = []
        for (i, token) in enumerate(example.doc_tokens):
            orig_to_tok_index.append(len(all_doc_tokens))
            sub_tokens = tokenizer.tokenize(token)
            for sub_token in sub_tokens:
                tok_to_orig_index.append(i)
                all_doc_tokens.append(sub_token)

            tok_start_position = None
            tok_end_position = None
            if is_training and example.is_impossible:
                tok_start_position = -1
                tok_end_position = -1
            if is_training and not example.is_impossible:
                tok_start_position = orig_to_tok_index[example.start_position]
                if example.end_position < len(example.doc_tokens) - 1:
                    tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
                else:
                    tok_end_position = len(all_doc_tokens) - 1
                (tok_start_position, tok_end_position) = _improve_answer_span(
                    all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
                    example.orig_answer_text)

            # The -3 accounts for [CLS], [SEP] and [SEP]
            max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

            # We can have documents that are longer than the maximum sequence length.
            # To deal with this we do a sliding window approach, where we take chunks
            # of the up to our max length with a stride of `doc_stride`.
            _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
                "DocSpan", ["start", "length"])
            doc_spans = []
            start_offset = 0
            while start_offset < len(all_doc_tokens):
                length = len(all_doc_tokens) - start_offset
                if length > max_tokens_for_doc:
                    length = max_tokens_for_doc
                doc_spans.append(_DocSpan(start=start_offset, length=length))
                if start_offset + length == len(all_doc_tokens):
                    break
                start_offset += min(length, doc_stride)

            for (doc_span_index, doc_span) in enumerate(doc_spans):
                tokens = []
                token_to_orig_map = {}
                token_is_max_context = {}
                segment_ids = []
                tokens.append("[CLS]")
                segment_ids.append(0)
                for token in query_tokens:
                    tokens.append(token)
                    segment_ids.append(0)
                tokens.append("[SEP]")
                segment_ids.append(0)

                for i in range(doc_span.length):
                    split_token_index = doc_span.start + i
                    token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]

                    is_max_context = _check_is_max_context(doc_spans, doc_span_index,
                                                           split_token_index)
                    token_is_max_context[len(tokens)] = is_max_context
                    tokens.append(all_doc_tokens[split_token_index])
                    segment_ids.append(1)
                tokens.append("[SEP]")
                segment_ids.append(1)

                input_ids = tokenizer.convert_tokens_to_ids(tokens)

                # The mask has 1 for real tokens and 0 for padding tokens. Only real
                # tokens are attended to.
                input_mask = [1] * len(input_ids)

                # Zero-pad up to the sequence length.
                while len(input_ids) < max_seq_length:
                    input_ids.append(0)
                    input_mask.append(0)
                    segment_ids.append(0)

                assert len(input_ids) == max_seq_length
                assert len(input_mask) == max_seq_length
                assert len(segment_ids) == max_seq_length

                start_position = None
                end_position = None
                if is_training and not example.is_impossible:
                    # For training, if our document chunk does not contain an annotation
                    # we throw it out, since there is nothing to predict.
                    doc_start = doc_span.start
                    doc_end = doc_span.start + doc_span.length - 1
                    out_of_span = False
                    if not (tok_start_position >= doc_start and tok_end_position <= doc_end):
                        out_of_span = True
                    if out_of_span:
                        start_position = 0
                        end_position = 0
                    else:
                        doc_offset = len(query_tokens) + 2
                        start_position = tok_start_position - doc_start + doc_offset
                        end_position = tok_end_position - doc_start + doc_offset

                if is_training and example.is_impossible:
                    start_position = 0
                    end_position = 0

                if example_index < 20:
                    tf.logging.info("*** Example ***")
                    tf.logging.info("unique_id: %s" % (unique_id))
                    tf.logging.info("example_index: %s" % (example_index))
                    tf.logging.info("doc_span_index: %s" % (doc_span_index))
                    tf.logging.info("tokens: %s" % " ".join(
                        [tokenization.printable_text(x) for x in tokens]))
                    tf.logging.info("token_to_orig_map: %s" % " ".join(
                        ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)]))
                    tf.logging.info("token_is_max_context: %s" % " ".join([
                        "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
                    ]))
                    tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
                    tf.logging.info(
                        "input_mask: %s" % " ".join([str(x) for x in input_mask]))
                    tf.logging.info(
                        "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
                    if is_training and example.is_impossible:
                        tf.logging.info("impossible example")
                    if is_training and not example.is_impossible:
                        answer_text = " ".join(tokens[start_position:(end_position + 1)])
                        tf.logging.info("start_position: %d" % (start_position))
                        tf.logging.info("end_position: %d" % (end_position))
                        tf.logging.info(
                            "answer: %s" % (tokenization.printable_text(answer_text)))

                feature = InputFeatures(
                    unique_id=unique_id,
                    example_index=example_index,
                    doc_span_index=doc_span_index,
                    tokens=tokens,
                    token_to_orig_map=token_to_orig_map,
                    token_is_max_context=token_is_max_context,
                    input_ids=input_ids,
                    input_mask=input_mask,
                    segment_ids=segment_ids,
                    start_position=start_position,
                    end_position=end_position,
                    is_impossible=example.is_impossible)

                # Run callback

                result.append(feature)
                unique_id += 1
        return result

    class SquadExample(object):

        def __init__(self,
                     qas_id,
                     question_text,
                     doc_tokens,
                     orig_answer_text=None,
                     start_position=None,
                     end_position=None,
                     is_impossible=False):
            self.qas_id = qas_id
            self.question_text = question_text
            self.doc_tokens = doc_tokens
            self.orig_answer_text = orig_answer_text
            self.start_position = start_position
            self.end_position = end_position
            self.is_impossible = is_impossible

        def __str__(self):
            return self.__repr__()

        def __repr__(self):
            s = ""
            s += "qas_id: %s" % (tokenization.printable_text(self.qas_id))
            s += ", question_text: %s" % (
                tokenization.printable_text(self.question_text))
            s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
            if self.start_position:
                s += ", start_position: %d" % (self.start_position)
            if self.start_position:
                s += ", end_position: %d" % (self.end_position)
            if self.start_position:
                s += ", is_impossible: %r" % (self.is_impossible)
            return s

    def read_squad_examples(input_file, is_training):
        """Read a SQuAD json file into a list of SquadExample."""

        input_data = json.loads(input_file)["data"]

        def is_whitespace(c):
            if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
                return True
            return False

        examples = []
        for entry in input_data:
            for paragraph in entry["paragraphs"]:
                paragraph_text = paragraph["context"]
                doc_tokens = []
                char_to_word_offset = []
                prev_is_whitespace = True
                for c in paragraph_text:
                    if is_whitespace(c):
                        prev_is_whitespace = True
                    else:
                        if prev_is_whitespace:
                            doc_tokens.append(c)
                        else:
                            doc_tokens[-1] += c
                        prev_is_whitespace = False
                    char_to_word_offset.append(len(doc_tokens) - 1)

                for qa in paragraph["qas"]:
                    qas_id = qa["id"]
                    question_text = qa["question"]
                    start_position = None
                    end_position = None
                    orig_answer_text = None
                    is_impossible = False
                    if is_training:

                        if (len(qa["answers"]) != 1) and (not is_impossible):
                            raise ValueError(
                                "For training, each question should have exactly 1 answer.")
                        if not is_impossible:
                            answer = qa["answers"][0]
                            orig_answer_text = answer["text"]
                            answer_offset = answer["answer_start"]
                            answer_length = len(orig_answer_text)
                            start_position = char_to_word_offset[answer_offset]
                            end_position = char_to_word_offset[answer_offset + answer_length - 1]
                            # Only add answers where the text can be exactly recovered from the
                            # document. If this CAN'T happen it's likely due to weird Unicode
                            # stuff so we will just skip the example.
                            #
                            # Note that this means for training mode, every example is NOT
                            # guaranteed to be preserved.
                            actual_text = " ".join(
                                doc_tokens[start_position:(end_position + 1)])
                            cleaned_answer_text = " ".join(
                                tokenization.whitespace_tokenize(orig_answer_text))
                            if actual_text.find(cleaned_answer_text) == -1:
                                tf.logging.warning("Could not find answer: '%s' vs. '%s'",
                                                   actual_text, cleaned_answer_text)
                                continue
                        else:
                            start_position = -1
                            end_position = -1
                            orig_answer_text = ""

                    example = SquadExample(
                        qas_id=qas_id,
                        question_text=question_text,
                        doc_tokens=doc_tokens,
                        orig_answer_text=orig_answer_text,
                        start_position=start_position,
                        end_position=end_position,
                        is_impossible=is_impossible)
                    examples.append(example)

        return examples

    def get_result(title, text, question, url):

        data = make_json(title, text, question)

        examples = read_squad_examples(data, False)

        predict_files = convert_examples_to_features(
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=512,
            doc_stride=128,
            max_query_length=100,
            is_training=False,
        )

        headers = {"content-type": "application/json"}
        all_results = []
        for predict_file in predict_files:
            features = {}
            features["unique_ids"] = predict_file.unique_id
            features["input_mask"] = predict_file.input_mask
            features["segment_ids"] = predict_file.segment_ids
            features["input_ids"] = predict_file.input_ids
            data_list = []
            data_list.append(features)

            data = json.dumps({"instances": data_list})

            json_response = requests.post(url, data=data, headers=headers)

            x = json.loads(json_response.text)

            all_results.append(
                RawResult(
                    unique_id=predict_file.unique_id,
                    start_logits=x['predictions'][0]['start_logits'],
                    end_logits=x['predictions'][0]['end_logits']))

        result = write_predictions(examples, predict_files, all_results, 20, 64, True)
        return result

    return get_result(title, text, question, url)