aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/create_squad_features.py
diff options
context:
space:
mode:
Diffstat (limited to 'scripts/create_squad_features.py')
-rw-r--r--scripts/create_squad_features.py746
1 files changed, 746 insertions, 0 deletions
diff --git a/scripts/create_squad_features.py b/scripts/create_squad_features.py
new file mode 100644
index 0000000..e779b9e
--- /dev/null
+++ b/scripts/create_squad_features.py
@@ -0,0 +1,746 @@
+
+ #!/usr/bin/env python
+ # coding: utf-8
+
+ # auther = 'liuzhiyong'
+ # date = 20201204
+
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+import json
+import datetime
+import threading
+import time
+from flask import Flask, abort, request, jsonify
+from concurrent.futures import ThreadPoolExecutor
+
+import collections
+import math
+import os
+import random
+import modeling
+import optimization
+import tokenization
+import six
+import tensorflow as tf
+import sys
+import requests
+
+from global_setting import *
+
+version_2_with_negative = True
+
+def get_squad_feature_result(title,text,tokenizer,question, url):
+
+ def make_json(title, text, question):
+ res = {}
+ res['data'] = []
+ data_inside = {}
+
+ data_inside['title'] = title
+ data_inside['paragraphs'] = []
+ paragraphs_inside = {}
+ paragraphs_inside['context'] = text
+ paragraphs_inside['qas'] = []
+ for ques in question:
+ qas_inside = {}
+ qas_inside['answers'] = []
+
+ answer_inside = {}
+
+ qas_inside['id'] = ques
+ qas_inside['question'] = ques
+ qas_inside['answers'].append(answer_inside.copy())
+ paragraphs_inside['qas'].append(qas_inside.copy())
+ data_inside['paragraphs'].append(paragraphs_inside.copy())
+
+ res['data'].append(data_inside.copy())
+ return json.dumps(res)
+
+
+ def _compute_softmax(scores):
+ """Compute softmax probability over raw logits."""
+ if not scores:
+ return []
+
+ max_score = None
+ for score in scores:
+ if max_score is None or score > max_score:
+ max_score = score
+
+ exp_scores = []
+ total_sum = 0.0
+ for score in scores:
+ x = math.exp(score - max_score)
+ exp_scores.append(x)
+ total_sum += x
+
+ probs = []
+ for score in exp_scores:
+ probs.append(score / total_sum)
+ return probs
+
+ def get_final_text(pred_text, orig_text, do_lower_case):
+
+ def _strip_spaces(text):
+ ns_chars = []
+ ns_to_s_map = collections.OrderedDict()
+ for (i, c) in enumerate(text):
+ if c == " ":
+ continue
+ ns_to_s_map[len(ns_chars)] = i
+ ns_chars.append(c)
+ ns_text = "".join(ns_chars)
+ return (ns_text, ns_to_s_map)
+
+ # We first tokenize `orig_text`, strip whitespace from the result
+ # and `pred_text`, and check if they are the same length. If they are
+ # NOT the same length, the heuristic has failed. If they are the same
+ # length, we assume the characters are one-to-one aligned.
+ tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)
+
+ tok_text = " ".join(tokenizer.tokenize(orig_text))
+
+ start_position = tok_text.find(pred_text)
+ if start_position == -1:
+ if 0:
+ tf.logging.info(
+ "Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
+ return orig_text
+ end_position = start_position + len(pred_text) - 1
+
+ (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
+ (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
+
+ if len(orig_ns_text) != len(tok_ns_text):
+ if 0:
+ tf.logging.info("Length not equal after stripping spaces: '%s' vs '%s'",
+ orig_ns_text, tok_ns_text)
+ return orig_text
+
+ # We then project the characters in `pred_text` back to `orig_text` using
+ # the character-to-character alignment.
+ tok_s_to_ns_map = {}
+ for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
+ tok_s_to_ns_map[tok_index] = i
+
+ orig_start_position = None
+ if start_position in tok_s_to_ns_map:
+ ns_start_position = tok_s_to_ns_map[start_position]
+ if ns_start_position in orig_ns_to_s_map:
+ orig_start_position = orig_ns_to_s_map[ns_start_position]
+
+ if orig_start_position is None:
+ if 0:
+ tf.logging.info("Couldn't map start position")
+ return orig_text
+
+ orig_end_position = None
+ if end_position in tok_s_to_ns_map:
+ ns_end_position = tok_s_to_ns_map[end_position]
+ if ns_end_position in orig_ns_to_s_map:
+ orig_end_position = orig_ns_to_s_map[ns_end_position]
+
+ if orig_end_position is None:
+ if 0:
+ tf.logging.info("Couldn't map end position")
+ return orig_text
+
+ output_text = orig_text[orig_start_position:(orig_end_position + 1)]
+ return output_text
+
+ def _get_best_indexes(logits, n_best_size):
+
+ index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
+
+ best_indexes = []
+ for i in range(len(index_and_score)):
+ if i >= n_best_size:
+ break
+ best_indexes.append(index_and_score[i][0])
+ return best_indexes
+
+ RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"])
+
+ def write_predictions(all_examples, all_features, all_results, n_best_size,
+ max_answer_length, do_lower_case):
+ """Write final predictions to the json file and log-odds of null if needed."""
+
+ example_index_to_features = collections.defaultdict(list)
+ for feature in all_features:
+ example_index_to_features[feature.example_index].append(feature)
+
+ unique_id_to_result = {}
+ for result in all_results:
+ unique_id_to_result[result.unique_id] = result
+
+ _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
+ "PrelimPrediction",
+ ["feature_index", "start_index", "end_index", "start_logit", "end_logit"])
+
+ all_predictions = collections.OrderedDict()
+ all_nbest_json = collections.OrderedDict()
+ scores_diff_json = collections.OrderedDict()
+
+ for (example_index, example) in enumerate(all_examples):
+ features = example_index_to_features[example_index]
+
+ prelim_predictions = []
+ # keep track of the minimum score of null start+end of position 0
+ score_null = 1000000 # large and positive
+ min_null_feature_index = 0 # the paragraph slice with min mull score
+ null_start_logit = 0 # the start logit at the slice with min null score
+ null_end_logit = 0 # the end logit at the slice with min null score
+ for (feature_index, feature) in enumerate(features):
+ result = unique_id_to_result[feature.unique_id]
+ start_indexes = _get_best_indexes(result.start_logits, n_best_size)
+ end_indexes = _get_best_indexes(result.end_logits, n_best_size)
+ # if we could have irrelevant answers, get the min score of irrelevant
+ if version_2_with_negative:
+ feature_null_score = result.start_logits[0] + result.end_logits[0]
+ if feature_null_score < score_null:
+ score_null = feature_null_score
+ min_null_feature_index = feature_index
+ null_start_logit = result.start_logits[0]
+ null_end_logit = result.end_logits[0]
+
+ for start_index in start_indexes:
+ for end_index in end_indexes:
+ # We could hypothetically create invalid predictions, e.g., predict
+ # that the start of the span is in the question. We throw out all
+ # invalid predictions.
+ if start_index >= len(feature.tokens):
+ continue
+ if end_index >= len(feature.tokens):
+ continue
+ if start_index not in feature.token_to_orig_map:
+ continue
+ if end_index not in feature.token_to_orig_map:
+ continue
+ if not feature.token_is_max_context.get(start_index, False):
+ continue
+ if end_index < start_index:
+ continue
+ length = end_index - start_index + 1
+ if length > max_answer_length:
+ continue
+ prelim_predictions.append(
+ _PrelimPrediction(
+ feature_index=feature_index,
+ start_index=start_index,
+ end_index=end_index,
+ start_logit=result.start_logits[start_index],
+ end_logit=result.end_logits[end_index]))
+
+ if version_2_with_negative:
+ prelim_predictions.append(
+ _PrelimPrediction(
+ feature_index=min_null_feature_index,
+ start_index=0,
+ end_index=0,
+ start_logit=null_start_logit,
+ end_logit=null_end_logit))
+ prelim_predictions = sorted(
+ prelim_predictions,
+ key=lambda x: (x.start_logit + x.end_logit),
+ reverse=True)
+
+ _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
+ "NbestPrediction", ["text", "start_logit", "end_logit"])
+
+ seen_predictions = {}
+ nbest = []
+ for pred in prelim_predictions:
+ if len(nbest) >= n_best_size:
+ break
+ feature = features[pred.feature_index]
+ if pred.start_index > 0: # this is a non-null prediction
+ tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
+ orig_doc_start = feature.token_to_orig_map[pred.start_index]
+ orig_doc_end = feature.token_to_orig_map[pred.end_index]
+ orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
+ tok_text = " ".join(tok_tokens)
+
+ # De-tokenize WordPieces that have been split off.
+ tok_text = tok_text.replace(" ##", "")
+ tok_text = tok_text.replace("##", "")
+
+ # Clean whitespace
+ tok_text = tok_text.strip()
+ tok_text = " ".join(tok_text.split())
+ orig_text = " ".join(orig_tokens)
+
+ final_text = get_final_text(tok_text, orig_text, do_lower_case)
+ if final_text in seen_predictions:
+ continue
+
+ seen_predictions[final_text] = True
+ else:
+ final_text = ""
+ seen_predictions[final_text] = True
+
+ nbest.append(
+ _NbestPrediction(
+ text=final_text,
+ start_logit=pred.start_logit,
+ end_logit=pred.end_logit))
+
+ # if we didn't inlude the empty option in the n-best, inlcude it
+ if version_2_with_negative:
+ if "" not in seen_predictions:
+ nbest.append(
+ _NbestPrediction(
+ text="", start_logit=null_start_logit,
+ end_logit=null_end_logit))
+
+ # In very rare edge cases we could have no valid predictions. So we
+ # just create a nonce prediction in this case to avoid failure.
+ if not nbest:
+ nbest.append(
+ _NbestPrediction(text="", start_logit=0.0, end_logit=0.0))
+
+ assert len(nbest) >= 1
+
+ total_scores = []
+ best_non_null_entry = None
+ for entry in nbest:
+ total_scores.append(entry.start_logit + entry.end_logit)
+ if not best_non_null_entry:
+ if entry.text:
+ best_non_null_entry = entry
+
+ probs = _compute_softmax(total_scores)
+
+ nbest_json = []
+ for (i, entry) in enumerate(nbest):
+ output = collections.OrderedDict()
+ output["text"] = entry.text
+ output["probability"] = probs[i]
+ output["start_logit"] = entry.start_logit
+ output["end_logit"] = entry.end_logit
+ nbest_json.append(output)
+
+ assert len(nbest_json) >= 1
+
+ if not version_2_with_negative:
+ all_predictions[example.qas_id] = nbest_json[0]["text"]
+ else:
+ # predict "" iff the null score - the score of best non-null > threshold
+ score_diff = score_null - best_non_null_entry.start_logit - (
+ best_non_null_entry.end_logit)
+ scores_diff_json[example.qas_id] = score_diff
+ if score_diff > 0:
+ all_predictions[example.qas_id] = ""
+ else:
+ all_predictions[example.qas_id] = best_non_null_entry.text
+
+ all_nbest_json[example.qas_id] = nbest_json
+ return all_predictions
+
+
+ def create_int_feature(values):
+
+ feature = tf.train.Feature(
+ int64_list=tf.train.Int64List(value=list(values)))
+ return feature
+
+
+ class InputFeatures(object):
+ """A single set of features of data."""
+
+ def __init__(self,
+ unique_id,
+ example_index,
+ doc_span_index,
+ tokens,
+ token_to_orig_map,
+ token_is_max_context,
+ input_ids,
+ input_mask,
+ segment_ids,
+ start_position=None,
+ end_position=None,
+ is_impossible=None):
+ self.unique_id = unique_id
+ self.example_index = example_index
+ self.doc_span_index = doc_span_index
+ self.tokens = tokens
+ self.token_to_orig_map = token_to_orig_map
+ self.token_is_max_context = token_is_max_context
+ self.input_ids = input_ids
+ self.input_mask = input_mask
+ self.segment_ids = segment_ids
+ self.start_position = start_position
+ self.end_position = end_position
+ self.is_impossible = is_impossible
+
+ def _check_is_max_context(doc_spans, cur_span_index, position):
+ """Check if this is the 'max context' doc span for the token."""
+
+ # Because of the sliding window approach taken to scoring documents, a single
+ # token can appear in multiple documents. E.g.
+ # Doc: the man went to the store and bought a gallon of milk
+ # Span A: the man went to the
+ # Span B: to the store and bought
+ # Span C: and bought a gallon of
+ # ...
+ #
+ # Now the word 'bought' will have two scores from spans B and C. We only
+ # want to consider the score with "maximum context", which we define as
+ # the *minimum* of its left and right context (the *sum* of left and
+ # right context will always be the same, of course).
+ #
+ # In the example the maximum context for 'bought' would be span C since
+ # it has 1 left context and 3 right context, while span B has 4 left context
+ # and 0 right context.
+ best_score = None
+ best_span_index = None
+ for (span_index, doc_span) in enumerate(doc_spans):
+ end = doc_span.start + doc_span.length - 1
+ if position < doc_span.start:
+ continue
+ if position > end:
+ continue
+ num_left_context = position - doc_span.start
+ num_right_context = end - position
+ score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
+ if best_score is None or score > best_score:
+ best_score = score
+ best_span_index = span_index
+
+ return cur_span_index == best_span_index
+
+ def convert_examples_to_features(examples, tokenizer, max_seq_length,
+ doc_stride, max_query_length, is_training):
+ """Loads a data file into a list of `InputBatch`s."""
+
+ unique_id = 1000000000
+ result = []
+
+ for (example_index, example) in enumerate(examples):
+ query_tokens = tokenizer.tokenize(example.question_text)
+
+ if len(query_tokens) > max_query_length:
+ query_tokens = query_tokens[0:max_query_length]
+
+ tok_to_orig_index = []
+ orig_to_tok_index = []
+ all_doc_tokens = []
+ for (i, token) in enumerate(example.doc_tokens):
+ orig_to_tok_index.append(len(all_doc_tokens))
+ sub_tokens = tokenizer.tokenize(token)
+ for sub_token in sub_tokens:
+ tok_to_orig_index.append(i)
+ all_doc_tokens.append(sub_token)
+
+ tok_start_position = None
+ tok_end_position = None
+ if is_training and example.is_impossible:
+ tok_start_position = -1
+ tok_end_position = -1
+ if is_training and not example.is_impossible:
+ tok_start_position = orig_to_tok_index[example.start_position]
+ if example.end_position < len(example.doc_tokens) - 1:
+ tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
+ else:
+ tok_end_position = len(all_doc_tokens) - 1
+ (tok_start_position, tok_end_position) = _improve_answer_span(
+ all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
+ example.orig_answer_text)
+
+ # The -3 accounts for [CLS], [SEP] and [SEP]
+ max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
+
+ # We can have documents that are longer than the maximum sequence length.
+ # To deal with this we do a sliding window approach, where we take chunks
+ # of the up to our max length with a stride of `doc_stride`.
+ _DocSpan = collections.namedtuple( # pylint: disable=invalid-name
+ "DocSpan", ["start", "length"])
+ doc_spans = []
+ start_offset = 0
+ while start_offset < len(all_doc_tokens):
+ length = len(all_doc_tokens) - start_offset
+ if length > max_tokens_for_doc:
+ length = max_tokens_for_doc
+ doc_spans.append(_DocSpan(start=start_offset, length=length))
+ if start_offset + length == len(all_doc_tokens):
+ break
+ start_offset += min(length, doc_stride)
+
+ for (doc_span_index, doc_span) in enumerate(doc_spans):
+ tokens = []
+ token_to_orig_map = {}
+ token_is_max_context = {}
+ segment_ids = []
+ tokens.append("[CLS]")
+ segment_ids.append(0)
+ for token in query_tokens:
+ tokens.append(token)
+ segment_ids.append(0)
+ tokens.append("[SEP]")
+ segment_ids.append(0)
+
+ for i in range(doc_span.length):
+ split_token_index = doc_span.start + i
+ token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
+
+ is_max_context = _check_is_max_context(doc_spans, doc_span_index,
+ split_token_index)
+ token_is_max_context[len(tokens)] = is_max_context
+ tokens.append(all_doc_tokens[split_token_index])
+ segment_ids.append(1)
+ tokens.append("[SEP]")
+ segment_ids.append(1)
+
+ input_ids = tokenizer.convert_tokens_to_ids(tokens)
+
+ # The mask has 1 for real tokens and 0 for padding tokens. Only real
+ # tokens are attended to.
+ input_mask = [1] * len(input_ids)
+
+ # Zero-pad up to the sequence length.
+ while len(input_ids) < max_seq_length:
+ input_ids.append(0)
+ input_mask.append(0)
+ segment_ids.append(0)
+
+ assert len(input_ids) == max_seq_length
+ assert len(input_mask) == max_seq_length
+ assert len(segment_ids) == max_seq_length
+
+ start_position = None
+ end_position = None
+ if is_training and not example.is_impossible:
+ # For training, if our document chunk does not contain an annotation
+ # we throw it out, since there is nothing to predict.
+ doc_start = doc_span.start
+ doc_end = doc_span.start + doc_span.length - 1
+ out_of_span = False
+ if not (tok_start_position >= doc_start and
+ tok_end_position <= doc_end):
+ out_of_span = True
+ if out_of_span:
+ start_position = 0
+ end_position = 0
+ else:
+ doc_offset = len(query_tokens) + 2
+ start_position = tok_start_position - doc_start + doc_offset
+ end_position = tok_end_position - doc_start + doc_offset
+
+ if is_training and example.is_impossible:
+ start_position = 0
+ end_position = 0
+
+ if example_index < 20:
+ tf.logging.info("*** Example ***")
+ tf.logging.info("unique_id: %s" % (unique_id))
+ tf.logging.info("example_index: %s" % (example_index))
+ tf.logging.info("doc_span_index: %s" % (doc_span_index))
+ tf.logging.info("tokens: %s" % " ".join(
+ [tokenization.printable_text(x) for x in tokens]))
+ tf.logging.info("token_to_orig_map: %s" % " ".join(
+ ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)]))
+ tf.logging.info("token_is_max_context: %s" % " ".join([
+ "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
+ ]))
+ tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
+ tf.logging.info(
+ "input_mask: %s" % " ".join([str(x) for x in input_mask]))
+ tf.logging.info(
+ "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
+ if is_training and example.is_impossible:
+ tf.logging.info("impossible example")
+ if is_training and not example.is_impossible:
+ answer_text = " ".join(tokens[start_position:(end_position + 1)])
+ tf.logging.info("start_position: %d" % (start_position))
+ tf.logging.info("end_position: %d" % (end_position))
+ tf.logging.info(
+ "answer: %s" % (tokenization.printable_text(answer_text)))
+
+ feature = InputFeatures(
+ unique_id=unique_id,
+ example_index=example_index,
+ doc_span_index=doc_span_index,
+ tokens=tokens,
+ token_to_orig_map=token_to_orig_map,
+ token_is_max_context=token_is_max_context,
+ input_ids=input_ids,
+ input_mask=input_mask,
+ segment_ids=segment_ids,
+ start_position=start_position,
+ end_position=end_position,
+ is_impossible=example.is_impossible)
+
+ # Run callback
+
+ result.append(feature)
+ unique_id += 1
+ return result
+
+ class SquadExample(object):
+
+
+ def __init__(self,
+ qas_id,
+ question_text,
+ doc_tokens,
+ orig_answer_text=None,
+ start_position=None,
+ end_position=None,
+ is_impossible=False):
+ self.qas_id = qas_id
+ self.question_text = question_text
+ self.doc_tokens = doc_tokens
+ self.orig_answer_text = orig_answer_text
+ self.start_position = start_position
+ self.end_position = end_position
+ self.is_impossible = is_impossible
+
+ def __str__(self):
+ return self.__repr__()
+
+ def __repr__(self):
+ s = ""
+ s += "qas_id: %s" % (tokenization.printable_text(self.qas_id))
+ s += ", question_text: %s" % (
+ tokenization.printable_text(self.question_text))
+ s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
+ if self.start_position:
+ s += ", start_position: %d" % (self.start_position)
+ if self.start_position:
+ s += ", end_position: %d" % (self.end_position)
+ if self.start_position:
+ s += ", is_impossible: %r" % (self.is_impossible)
+ return s
+
+
+
+ def read_squad_examples(input_file, is_training):
+ """Read a SQuAD json file into a list of SquadExample."""
+
+ input_data = json.loads(input_file)["data"]
+
+ def is_whitespace(c):
+ if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
+ return True
+ return False
+
+ examples = []
+ for entry in input_data:
+ for paragraph in entry["paragraphs"]:
+ paragraph_text = paragraph["context"]
+ doc_tokens = []
+ char_to_word_offset = []
+ prev_is_whitespace = True
+ for c in paragraph_text:
+ if is_whitespace(c):
+ prev_is_whitespace = True
+ else:
+ if prev_is_whitespace:
+ doc_tokens.append(c)
+ else:
+ doc_tokens[-1] += c
+ prev_is_whitespace = False
+ char_to_word_offset.append(len(doc_tokens) - 1)
+
+ for qa in paragraph["qas"]:
+ qas_id = qa["id"]
+ question_text = qa["question"]
+ start_position = None
+ end_position = None
+ orig_answer_text = None
+ is_impossible = False
+ if is_training:
+
+
+ if (len(qa["answers"]) != 1) and (not is_impossible):
+ raise ValueError(
+ "For training, each question should have exactly 1 answer.")
+ if not is_impossible:
+ answer = qa["answers"][0]
+ orig_answer_text = answer["text"]
+ answer_offset = answer["answer_start"]
+ answer_length = len(orig_answer_text)
+ start_position = char_to_word_offset[answer_offset]
+ end_position = char_to_word_offset[answer_offset + answer_length -
+ 1]
+ # Only add answers where the text can be exactly recovered from the
+ # document. If this CAN'T happen it's likely due to weird Unicode
+ # stuff so we will just skip the example.
+ #
+ # Note that this means for training mode, every example is NOT
+ # guaranteed to be preserved.
+ actual_text = " ".join(
+ doc_tokens[start_position:(end_position + 1)])
+ cleaned_answer_text = " ".join(
+ tokenization.whitespace_tokenize(orig_answer_text))
+ if actual_text.find(cleaned_answer_text) == -1:
+ tf.logging.warning("Could not find answer: '%s' vs. '%s'",
+ actual_text, cleaned_answer_text)
+ continue
+ else:
+ start_position = -1
+ end_position = -1
+ orig_answer_text = ""
+
+ example = SquadExample(
+ qas_id=qas_id,
+ question_text=question_text,
+ doc_tokens=doc_tokens,
+ orig_answer_text=orig_answer_text,
+ start_position=start_position,
+ end_position=end_position,
+ is_impossible=is_impossible)
+ examples.append(example)
+
+ return examples
+
+
+ def get_result(title,text,question,url):
+
+ data = make_json(title,text,question)
+
+
+ examples = read_squad_examples(data,False)
+
+
+ predict_files = convert_examples_to_features(
+ examples=examples,
+ tokenizer=tokenizer,
+ max_seq_length=512,
+ doc_stride=128,
+ max_query_length=100,
+ is_training=False,
+ )
+
+ headers = {"content-type": "application/json"}
+ all_results = []
+ for predict_file in predict_files:
+ features = {}
+ features["unique_ids"] = predict_file.unique_id
+ features["input_mask"] = predict_file.input_mask
+ features["segment_ids"] = predict_file.segment_ids
+ features["input_ids"] = predict_file.input_ids
+ data_list = []
+ data_list.append(features)
+
+ data = json.dumps({"instances": data_list})
+
+ json_response = requests.post(url, data=data, headers=headers)
+
+
+ x = json.loads(json_response.text)
+
+ all_results.append(
+ RawResult(
+ unique_id=predict_file.unique_id,
+ start_logits=x['predictions'][0]['start_logits'],
+ end_logits=x['predictions'][0]['end_logits']))
+
+ result = write_predictions(examples, predict_files, all_results,20, 64,True)
+ return result
+
+ return get_result(title, text, question, url)
+