diff options
author | zhaoyehua <zhaoyh6@asiainfo.com> | 2021-03-24 16:25:33 +0800 |
---|---|---|
committer | zhaoyehua <zhaoyh6@asiainfo.com> | 2021-03-24 16:27:48 +0800 |
commit | dd67db0dede71551c772caa685d3c12a1a3e57d2 (patch) | |
tree | 3c36524a6f65e49002f8dd9767445300da343734 /scripts | |
parent | 11b32441cc0235cc5ca4066085a3d8d0253e5789 (diff) |
feat:Adjust the directory and increase the image production process
Issue-ID: USECASEUI-525
Change-Id: I7bcbf0b48778fd59946483b253f32dda217913c0
Signed-off-by: zhaoyehua <zhaoyh6@asiainfo.com>
Diffstat (limited to 'scripts')
-rw-r--r-- | scripts/api_squad.py | 1028 | ||||
-rw-r--r-- | scripts/api_squad_offline.py | 264 | ||||
-rw-r--r-- | scripts/api_squad_online.py | 81 | ||||
-rw-r--r-- | scripts/create_squad_features.py | 721 | ||||
-rw-r--r-- | scripts/global_setting.py | 31 | ||||
-rwxr-xr-x | scripts/load_model.sh | 6 |
6 files changed, 0 insertions, 2131 deletions
diff --git a/scripts/api_squad.py b/scripts/api_squad.py deleted file mode 100644 index f29a74b..0000000 --- a/scripts/api_squad.py +++ /dev/null @@ -1,1028 +0,0 @@ -# coding=utf-8 -# squad interface -# Required parameters -# FLAGS_output_dir :the output path of the model training during training process, the output of the trained model, etc.; the output path of the model prediction during predicting process -# FLAGS_init_checkpoint_squad : model initialization path, use bert pre-trained model for training; use the output path during training for prediction -# FLAGS_predict_file : the file to be predicted, csv file -# FLAGS_train_file : file to be trained, csv file -# FLAGS_do_predict : whether to predict or not -# FLAGS_do_train : whether to train or not -# FLAGS_train_batch_size : the batch_size for training, default : 16 -# FLAGS_predict_batch_size : the batch_size when predicting, default: 8 -# FLAGS_learning_rate : the learning_rate at training time, default: 5e-5 -# FLAGS_num_train_epochs : epochs at training time, default: 3 -# FLAGS_max_answer_length : the maximum length of the answer, default: 100 characters -# FLAGS_max_query_length : the maximum length of the question, default: 64 -# FLAGS_version_2_with_negative : whether there is no answer to the question, default false, must be set to False when reasoning - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import collections -import json -import math -import modeling -import optimization -import tokenization -import six -import tensorflow as tf -import pandas as pd -from global_setting import FLAGS_init_checkpoint_squad - -FLAGS_max_seq_length = 512 -FLAGS_do_lower_case = True -FLAGS_doc_stride = 128 - - -FLAGS_save_checkpoints_steps = 1000 -FLAGS_iterations_per_loop = 1000 -FLAGS_n_best_size = 20 -FLAGS_tpu_zone = None -FLAGS_tpu_name = None -FLAGS_num_tpu_cores = 8 -FLAGS_verbose_logging = False -FLAGS_master = None -FLAGS_use_tpu = False -FLAGS_warmup_proportion = 0.1 -FLAGS_gcp_project = None -FLAGS_null_score_diff_threshold = 0.0 - - -def make_json(input_file, questions): - print(input_file) - data_train = pd.read_excel(input_file) - print(444) - data_train.fillna(0, inplace=True) - data_train.index = [i for i in range(len(data_train))] - question = questions - res = {} - res['data'] = [] - data_inside = {} - for i in data_train.index: - data_inside['title'] = 'Not available' - data_inside['paragraphs'] = [] - paragraphs_inside = {} - paragraphs_inside['context'] = data_train.loc[i, 'text'] - paragraphs_inside['qas'] = [] - for ques in question: - qas_inside = {} - qas_inside['answers'] = [] - if data_train.loc[i, ques]: - answer_inside = {} - answer_inside['text'] = str(data_train.loc[i, ques]) - answer_inside['answer_start'] = paragraphs_inside['context'].find(answer_inside['text']) - qas_inside['is_impossible'] = 0 - else: - qas_inside['is_impossible'] = 1 - answer_inside = {} - qas_inside['id'] = str(i) + ques - qas_inside['question'] = ques - qas_inside['answers'].append(answer_inside.copy()) - paragraphs_inside['qas'].append(qas_inside.copy()) - data_inside['paragraphs'].append(paragraphs_inside.copy()) - - res['data'].append(data_inside.copy()) - print('make json done') - return json.dumps(res) - - -class SquadExample(object): - """A single training/test example for simple sequence classification. - - For examples without an answer, the start and end position are -1. - """ - - def __init__(self, - qas_id, - question_text, - doc_tokens, - orig_answer_text=None, - start_position=None, - end_position=None, - is_impossible=False): - self.qas_id = qas_id - self.question_text = question_text - self.doc_tokens = doc_tokens - self.orig_answer_text = orig_answer_text - self.start_position = start_position - self.end_position = end_position - self.is_impossible = is_impossible - - def __str__(self): - return self.__repr__() - - def __repr__(self): - s = "" - s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) - s += ", question_text: %s" % ( - tokenization.printable_text(self.question_text)) - s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) - if self.start_position: - s += ", start_position: %d" % (self.start_position) - if self.start_position: - s += ", end_position: %d" % (self.end_position) - if self.start_position: - s += ", is_impossible: %r" % (self.is_impossible) - return s - - -class InputFeatures(object): - """A single set of features of data.""" - - def __init__(self, - unique_id, - example_index, - doc_span_index, - tokens, - token_to_orig_map, - token_is_max_context, - input_ids, - input_mask, - segment_ids, - start_position=None, - end_position=None, - is_impossible=None): - self.unique_id = unique_id - self.example_index = example_index - self.doc_span_index = doc_span_index - self.tokens = tokens - self.token_to_orig_map = token_to_orig_map - self.token_is_max_context = token_is_max_context - self.input_ids = input_ids - self.input_mask = input_mask - self.segment_ids = segment_ids - self.start_position = start_position - self.end_position = end_position - self.is_impossible = is_impossible - - -def read_squad_examples(input_file, is_training, questions, FLAGS_version_2_with_negative): - """Read a SQuAD json file into a list of SquadExample.""" - data = make_json(input_file, questions) - input_data = json.loads(data)["data"] - - def is_whitespace(c): - if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: - return True - return False - - examples = [] - for entry in input_data: - for paragraph in entry["paragraphs"]: - paragraph_text = paragraph["context"] - doc_tokens = [] - char_to_word_offset = [] - prev_is_whitespace = True - for c in paragraph_text: - if is_whitespace(c): - prev_is_whitespace = True - else: - if prev_is_whitespace: - doc_tokens.append(c) - else: - doc_tokens[-1] += c - prev_is_whitespace = False - char_to_word_offset.append(len(doc_tokens) - 1) - - for qa in paragraph["qas"]: - qas_id = qa["id"] - question_text = qa["question"] - start_position = None - end_position = None - orig_answer_text = None - is_impossible = False - if is_training: - - if FLAGS_version_2_with_negative: - is_impossible = qa["is_impossible"] - if (len(qa["answers"]) != 1) and (not is_impossible): - raise ValueError( - "For training, each question should have exactly 1 answer.") - if not is_impossible: - answer = qa["answers"][0] - orig_answer_text = answer["text"] - answer_offset = answer["answer_start"] - answer_length = len(orig_answer_text) - start_position = char_to_word_offset[answer_offset] - end_position = char_to_word_offset[answer_offset + answer_length - 1] - # Only add answers where the text can be exactly recovered from the - # document. If this CAN'T happen it's likely due to weird Unicode - # stuff so we will just skip the example. - # - # Note that this means for training mode, every example is NOT - # guaranteed to be preserved. - actual_text = " ".join( - doc_tokens[start_position:(end_position + 1)]) - cleaned_answer_text = " ".join( - tokenization.whitespace_tokenize(orig_answer_text)) - if actual_text.find(cleaned_answer_text) == -1: - tf.logging.warning("Could not find answer: '%s' vs. '%s'", - actual_text, cleaned_answer_text) - continue - else: - start_position = -1 - end_position = -1 - orig_answer_text = "" - - example = SquadExample( - qas_id=qas_id, - question_text=question_text, - doc_tokens=doc_tokens, - orig_answer_text=orig_answer_text, - start_position=start_position, - end_position=end_position, - is_impossible=is_impossible) - examples.append(example) - - return examples - - -def convert_examples_to_features(examples, tokenizer, max_seq_length, - doc_stride, max_query_length, is_training, - output_fn): - """Loads a data file into a list of `InputBatch`s.""" - - unique_id = 1000000000 - - for (example_index, example) in enumerate(examples): - query_tokens = tokenizer.tokenize(example.question_text) - - if len(query_tokens) > max_query_length: - query_tokens = query_tokens[0:max_query_length] - - tok_to_orig_index = [] - orig_to_tok_index = [] - all_doc_tokens = [] - for (i, token) in enumerate(example.doc_tokens): - orig_to_tok_index.append(len(all_doc_tokens)) - sub_tokens = tokenizer.tokenize(token) - for sub_token in sub_tokens: - tok_to_orig_index.append(i) - all_doc_tokens.append(sub_token) - - tok_start_position = None - tok_end_position = None - if is_training and example.is_impossible: - tok_start_position = -1 - tok_end_position = -1 - if is_training and not example.is_impossible: - tok_start_position = orig_to_tok_index[example.start_position] - if example.end_position < len(example.doc_tokens) - 1: - tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 - else: - tok_end_position = len(all_doc_tokens) - 1 - (tok_start_position, tok_end_position) = _improve_answer_span( - all_doc_tokens, tok_start_position, tok_end_position, tokenizer, - example.orig_answer_text) - - # The -3 accounts for [CLS], [SEP] and [SEP] - max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 - - # We can have documents that are longer than the maximum sequence length. - # To deal with this we do a sliding window approach, where we take chunks - # of the up to our max length with a stride of `doc_stride`. - _DocSpan = collections.namedtuple( # pylint: disable=invalid-name - "DocSpan", ["start", "length"]) - doc_spans = [] - start_offset = 0 - while start_offset < len(all_doc_tokens): - length = len(all_doc_tokens) - start_offset - if length > max_tokens_for_doc: - length = max_tokens_for_doc - doc_spans.append(_DocSpan(start=start_offset, length=length)) - if start_offset + length == len(all_doc_tokens): - break - start_offset += min(length, doc_stride) - - for (doc_span_index, doc_span) in enumerate(doc_spans): - tokens = [] - token_to_orig_map = {} - token_is_max_context = {} - segment_ids = [] - tokens.append("[CLS]") - segment_ids.append(0) - for token in query_tokens: - tokens.append(token) - segment_ids.append(0) - tokens.append("[SEP]") - segment_ids.append(0) - - for i in range(doc_span.length): - split_token_index = doc_span.start + i - token_to_orig_map[len( - tokens)] = tok_to_orig_index[split_token_index] - - is_max_context = _check_is_max_context(doc_spans, doc_span_index, - split_token_index) - token_is_max_context[len(tokens)] = is_max_context - tokens.append(all_doc_tokens[split_token_index]) - segment_ids.append(1) - tokens.append("[SEP]") - segment_ids.append(1) - - input_ids = tokenizer.convert_tokens_to_ids(tokens) - - # The mask has 1 for real tokens and 0 for padding tokens. Only real - # tokens are attended to. - input_mask = [1] * len(input_ids) - - # Zero-pad up to the sequence length. - while len(input_ids) < max_seq_length: - input_ids.append(0) - input_mask.append(0) - segment_ids.append(0) - - assert len(input_ids) == max_seq_length - assert len(input_mask) == max_seq_length - assert len(segment_ids) == max_seq_length - - start_position = None - end_position = None - if is_training and not example.is_impossible: - # For training, if our document chunk does not contain an annotation - # we throw it out, since there is nothing to predict. - doc_start = doc_span.start - doc_end = doc_span.start + doc_span.length - 1 - out_of_span = False - if not (tok_start_position >= doc_start and tok_end_position <= doc_end): - out_of_span = True - if out_of_span: - start_position = 0 - end_position = 0 - else: - doc_offset = len(query_tokens) + 2 - start_position = tok_start_position - doc_start + doc_offset - end_position = tok_end_position - doc_start + doc_offset - - if is_training and example.is_impossible: - start_position = 0 - end_position = 0 - - if example_index < 20: - tf.logging.info("*** Example ***") - tf.logging.info("unique_id: %s" % (unique_id)) - tf.logging.info("example_index: %s" % (example_index)) - tf.logging.info("doc_span_index: %s" % (doc_span_index)) - tf.logging.info("tokens: %s" % " ".join( - [tokenization.printable_text(x) for x in tokens])) - tf.logging.info("token_to_orig_map: %s" % " ".join( - ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) - tf.logging.info("token_is_max_context: %s" % " ".join([ - "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) - ])) - tf.logging.info("input_ids: %s" % - " ".join([str(x) for x in input_ids])) - tf.logging.info( - "input_mask: %s" % " ".join([str(x) for x in input_mask])) - tf.logging.info( - "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) - if is_training and example.is_impossible: - tf.logging.info("impossible example") - if is_training and not example.is_impossible: - answer_text = " ".join( - tokens[start_position:(end_position + 1)]) - tf.logging.info("start_position: %d" % (start_position)) - tf.logging.info("end_position: %d" % (end_position)) - tf.logging.info( - "answer: %s" % (tokenization.printable_text(answer_text))) - - feature = InputFeatures( - unique_id=unique_id, - example_index=example_index, - doc_span_index=doc_span_index, - tokens=tokens, - token_to_orig_map=token_to_orig_map, - token_is_max_context=token_is_max_context, - input_ids=input_ids, - input_mask=input_mask, - segment_ids=segment_ids, - start_position=start_position, - end_position=end_position, - is_impossible=example.is_impossible) - - # Run callback - output_fn(feature) - - unique_id += 1 - - -def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, - orig_answer_text): - """Returns tokenized answer spans that better match the annotated answer.""" - - # The SQuAD annotations are character based. We first project them to - # whitespace-tokenized words. But then after WordPiece tokenization, we can - # often find a "better match". For example: - # - # Question: What year was John Smith born? - # Context: The leader was John Smith (1895-1943). - # Answer: 1895 - # - # The original whitespace-tokenized answer will be "(1895-1943).". However - # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match - # the exact answer, 1895. - # - # However, this is not always possible. Consider the following: - # - # Question: What country is the top exporter of electornics? - # Context: The Japanese electronics industry is the lagest in the world. - # Answer: Japan - # - # In this case, the annotator chose "Japan" as a character sub-span of - # the word "Japanese". Since our WordPiece tokenizer does not split - # "Japanese", we just use "Japanese" as the annotation. This is fairly rare - # in SQuAD, but does happen. - tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) - - for new_start in range(input_start, input_end + 1): - for new_end in range(input_end, new_start - 1, -1): - text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) - if text_span == tok_answer_text: - return (new_start, new_end) - - return (input_start, input_end) - - -def _check_is_max_context(doc_spans, cur_span_index, position): - """Check if this is the 'max context' doc span for the token.""" - - # Because of the sliding window approach taken to scoring documents, a single - # token can appear in multiple documents. E.g. - # Doc: the man went to the store and bought a gallon of milk - # Span A: the man went to the - # Span B: to the store and bought - # Span C: and bought a gallon of - # ... - # - # Now the word 'bought' will have two scores from spans B and C. We only - # want to consider the score with "maximum context", which we define as - # the *minimum* of its left and right context (the *sum* of left and - # right context will always be the same, of course). - # - # In the example the maximum context for 'bought' would be span C since - # it has 1 left context and 3 right context, while span B has 4 left context - # and 0 right context. - best_score = None - best_span_index = None - for (span_index, doc_span) in enumerate(doc_spans): - end = doc_span.start + doc_span.length - 1 - if position < doc_span.start: - continue - if position > end: - continue - num_left_context = position - doc_span.start - num_right_context = end - position - score = min(num_left_context, num_right_context) + \ - 0.01 * doc_span.length - if best_score is None or score > best_score: - best_score = score - best_span_index = span_index - - return cur_span_index == best_span_index - - -def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, - use_one_hot_embeddings): - """Creates a classification model.""" - model = modeling.BertModel( - config=bert_config, - is_training=is_training, - input_ids=input_ids, - input_mask=input_mask, - token_type_ids=segment_ids, - use_one_hot_embeddings=use_one_hot_embeddings) - - final_hidden = model.get_sequence_output() - - final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3) - batch_size = final_hidden_shape[0] - seq_length = final_hidden_shape[1] - hidden_size = final_hidden_shape[2] - - output_weights = tf.get_variable( - "cls/squad/output_weights", [2, hidden_size], - initializer=tf.truncated_normal_initializer(stddev=0.02)) - - output_bias = tf.get_variable( - "cls/squad/output_bias", [2], initializer=tf.zeros_initializer()) - - final_hidden_matrix = tf.reshape(final_hidden, - [batch_size * seq_length, hidden_size]) - logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True) - logits = tf.nn.bias_add(logits, output_bias) - - logits = tf.reshape(logits, [batch_size, seq_length, 2]) - logits = tf.transpose(logits, [2, 0, 1]) - - unstacked_logits = tf.unstack(logits, axis=0) - - (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1]) - - return (start_logits, end_logits) - - -def model_fn_builder(bert_config, init_checkpoint, learning_rate, - num_train_steps, num_warmup_steps, use_tpu, - use_one_hot_embeddings): - """Returns `model_fn` closure for TPUEstimator.""" - - def model_fn(features, labels, mode, params): # pylint: disable=unused-argument - """The `model_fn` for TPUEstimator.""" - - tf.logging.info("*** Features ***") - for name in sorted(features.keys()): - tf.logging.info(" name = %s, shape = %s" % - (name, features[name].shape)) - - input_ids = features["input_ids"] - input_mask = features["input_mask"] - segment_ids = features["segment_ids"] - - is_training = (mode == tf.estimator.ModeKeys.TRAIN) - - (start_logits, end_logits) = create_model( - bert_config=bert_config, - is_training=is_training, - input_ids=input_ids, - input_mask=input_mask, - segment_ids=segment_ids, - use_one_hot_embeddings=use_one_hot_embeddings) - - tvars = tf.trainable_variables() - - initialized_variable_names = {} - scaffold_fn = None - if init_checkpoint: - (assignment_map, initialized_variable_names - ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) - if use_tpu: - - def tpu_scaffold(): - tf.train.init_from_checkpoint( - init_checkpoint, assignment_map) - return tf.train.Scaffold() - - scaffold_fn = tpu_scaffold - else: - tf.train.init_from_checkpoint(init_checkpoint, assignment_map) - - tf.logging.info("**** Trainable Variables ****") - for var in tvars: - init_string = "" - if var.name in initialized_variable_names: - init_string = ", *INIT_FROM_CKPT*" - tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, - init_string) - - output_spec = None - if mode == tf.estimator.ModeKeys.TRAIN: - seq_length = modeling.get_shape_list(input_ids)[1] - - def compute_loss(logits, positions): - one_hot_positions = tf.one_hot( - positions, depth=seq_length, dtype=tf.float32) - log_probs = tf.nn.log_softmax(logits, axis=-1) - loss = -tf.reduce_mean( - tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) - return loss - - start_positions = features["start_positions"] - end_positions = features["end_positions"] - - start_loss = compute_loss(start_logits, start_positions) - end_loss = compute_loss(end_logits, end_positions) - - total_loss = (start_loss + end_loss) / 2.0 - - train_op = optimization.create_optimizer( - total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) - - output_spec = tf.contrib.tpu.TPUEstimatorSpec( - mode=mode, - loss=total_loss, - train_op=train_op, - scaffold_fn=scaffold_fn) - elif mode == tf.estimator.ModeKeys.PREDICT: - predictions = { - # "unique_ids": unique_ids, - "start_logits": start_logits, - "end_logits": end_logits, - } - output_spec = tf.contrib.tpu.TPUEstimatorSpec( - mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) - else: - raise ValueError( - "Only TRAIN and PREDICT modes are supported: %s" % (mode)) - - return output_spec - - return model_fn - - -def input_fn_builder(input_file, seq_length, is_training, drop_remainder): - """Creates an `input_fn` closure to be passed to TPUEstimator.""" - - name_to_features = { - "unique_ids": tf.FixedLenFeature([], tf.int64), - "input_ids": tf.FixedLenFeature([seq_length], tf.int64), - "input_mask": tf.FixedLenFeature([seq_length], tf.int64), - "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), - } - - if is_training: - name_to_features["start_positions"] = tf.FixedLenFeature([], tf.int64) - name_to_features["end_positions"] = tf.FixedLenFeature([], tf.int64) - - def _decode_record(record, name_to_features): - """Decodes a record to a TensorFlow example.""" - example = tf.parse_single_example(record, name_to_features) - - # tf.Example only supports tf.int64, but the TPU only supports tf.int32. - # So cast all int64 to int32. - for name in list(example.keys()): - t = example[name] - if t.dtype == tf.int64: - t = tf.to_int32(t) - example[name] = t - - return example - - def input_fn(params): - """The actual input function.""" - batch_size = params["batch_size"] - - # For training, we want a lot of parallel reading and shuffling. - # For eval, we want no shuffling and parallel reading doesn't matter. - d = tf.data.TFRecordDataset(input_file) - if is_training: - d = d.repeat() - d = d.shuffle(buffer_size=100) - - d = d.apply( - tf.contrib.data.map_and_batch( - lambda record: _decode_record(record, name_to_features), - batch_size=batch_size, - drop_remainder=drop_remainder)) - - return d - - return input_fn - - -RawResult = collections.namedtuple("RawResult", - ["unique_id", "start_logits", "end_logits"]) - - -def write_predictions(all_examples, all_features, all_results, n_best_size, - max_answer_length, do_lower_case, output_prediction_file, - output_nbest_file, output_null_log_odds_file, FLAGS_version_2_with_negative): - """Write final predictions to the json file and log-odds of null if needed.""" - tf.logging.info("Writing predictions to: %s" % (output_prediction_file)) - tf.logging.info("Writing nbest to: %s" % (output_nbest_file)) - - example_index_to_features = collections.defaultdict(list) - for feature in all_features: - example_index_to_features[feature.example_index].append(feature) - - unique_id_to_result = {} - for result in all_results: - unique_id_to_result[result.unique_id] = result - - _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name - "PrelimPrediction", - ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) - - all_predictions = collections.OrderedDict() - all_nbest_json = collections.OrderedDict() - - for (example_index, example) in enumerate(all_examples): - features = example_index_to_features[example_index] - - prelim_predictions = [] - # keep track of the minimum score of null start+end of position 0 - score_null = 1000000 # large and positive - for (feature_index, feature) in enumerate(features): - result = unique_id_to_result[feature.unique_id] - start_indexes = _get_best_indexes(result.start_logits, n_best_size) - end_indexes = _get_best_indexes(result.end_logits, n_best_size) - # if we could have irrelevant answers, get the min score of irrelevant - if FLAGS_version_2_with_negative: - feature_null_score = result.start_logits[0] + \ - result.end_logits[0] - if feature_null_score < score_null: - score_null = feature_null_score - for start_index in start_indexes: - for end_index in end_indexes: - # We could hypothetically create invalid predictions, e.g., predict - # that the start of the span is in the question. We throw out all - # invalid predictions. - if start_index >= len(feature.tokens): - continue - if end_index >= len(feature.tokens): - continue - if start_index not in feature.token_to_orig_map: - continue - if end_index not in feature.token_to_orig_map: - continue - if not feature.token_is_max_context.get(start_index, False): - continue - if end_index < start_index: - continue - length = end_index - start_index + 1 - if length > max_answer_length: - continue - prelim_predictions.append( - _PrelimPrediction( - feature_index=feature_index, - start_index=start_index, - end_index=end_index, - start_logit=result.start_logits[start_index], - end_logit=result.end_logits[end_index])) - - prelim_predictions = sorted( - prelim_predictions, - key=lambda x: (x.start_logit + x.end_logit), - reverse=True) - - _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name - "NbestPrediction", ["text", "start_logit", "end_logit"]) - - seen_predictions = {} - nbest = [] - for pred in prelim_predictions: - if len(nbest) >= n_best_size: - break - feature = features[pred.feature_index] - if pred.start_index > 0: # this is a non-null prediction - tok_tokens = feature.tokens[pred.start_index:( - pred.end_index + 1)] - orig_doc_start = feature.token_to_orig_map[pred.start_index] - orig_doc_end = feature.token_to_orig_map[pred.end_index] - orig_tokens = example.doc_tokens[orig_doc_start:( - orig_doc_end + 1)] - tok_text = " ".join(tok_tokens) - - # De-tokenize WordPieces that have been split off. - tok_text = tok_text.replace(" ##", "") - tok_text = tok_text.replace("##", "") - - # Clean whitespace - tok_text = tok_text.strip() - tok_text = " ".join(tok_text.split()) - orig_text = " ".join(orig_tokens) - - final_text = get_final_text(tok_text, orig_text, do_lower_case) - if final_text in seen_predictions: - continue - - seen_predictions[final_text] = True - else: - final_text = "" - seen_predictions[final_text] = True - - nbest.append( - _NbestPrediction( - text=final_text, - start_logit=pred.start_logit, - end_logit=pred.end_logit)) - - # In very rare edge cases we could have no valid predictions. So we - # just create a nonce prediction in this case to avoid failure. - if not nbest: - nbest.append( - _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) - - assert len(nbest) >= 1 - - total_scores = [] - best_non_null_entry = None - for entry in nbest: - total_scores.append(entry.start_logit + entry.end_logit) - if not best_non_null_entry: - if entry.text: - best_non_null_entry = entry - - probs = _compute_softmax(total_scores) - - nbest_json = [] - for (i, entry) in enumerate(nbest): - output = collections.OrderedDict() - output["text"] = entry.text - output["probability"] = probs[i] - output["start_logit"] = entry.start_logit - output["end_logit"] = entry.end_logit - nbest_json.append(output) - - assert len(nbest_json) >= 1 - - all_predictions[example.qas_id] = nbest_json[0]["text"] - - all_nbest_json[example.qas_id] = nbest_json - - with tf.gfile.GFile(output_prediction_file, "w") as writer: - writer.write(json.dumps(all_predictions, indent=4) + "\n") - - -def get_final_text(pred_text, orig_text, do_lower_case): - """Project the tokenized prediction back to the original text.""" - - # When we created the data, we kept track of the alignment between original - # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So - # now `orig_text` contains the span of our original text corresponding to the - # span that we predicted. - # - # However, `orig_text` may contain extra characters that we don't want in - # our prediction. - # - # For example, let's say: - # pred_text = steve smith - # orig_text = Steve Smith's - # - # We don't want to return `orig_text` because it contains the extra "'s". - # - # We don't want to return `pred_text` because it's already been normalized - # (the SQuAD eval script also does punctuation stripping/lower casing but - # our tokenizer does additional normalization like stripping accent - # characters). - # - # What we really want to return is "Steve Smith". - # - # Therefore, we have to apply a semi-complicated alignment heruistic between - # `pred_text` and `orig_text` to get a character-to-charcter alignment. This - # can fail in certain cases in which case we just return `orig_text`. - - def _strip_spaces(text): - ns_chars = [] - ns_to_s_map = collections.OrderedDict() - for (i, c) in enumerate(text): - if c == " ": - continue - ns_to_s_map[len(ns_chars)] = i - ns_chars.append(c) - ns_text = "".join(ns_chars) - return (ns_text, ns_to_s_map) - - # We first tokenize `orig_text`, strip whitespace from the result - # and `pred_text`, and check if they are the same length. If they are - # NOT the same length, the heuristic has failed. If they are the same - # length, we assume the characters are one-to-one aligned. - tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) - - tok_text = " ".join(tokenizer.tokenize(orig_text)) - - start_position = tok_text.find(pred_text) - if start_position == -1: - if FLAGS_verbose_logging: - tf.logging.info( - "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) - return orig_text - end_position = start_position + len(pred_text) - 1 - - (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) - (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) - - if len(orig_ns_text) != len(tok_ns_text): - if FLAGS_verbose_logging: - tf.logging.info("Length not equal after stripping spaces: '%s' vs '%s'", - orig_ns_text, tok_ns_text) - return orig_text - - # We then project the characters in `pred_text` back to `orig_text` using - # the character-to-character alignment. - tok_s_to_ns_map = {} - for (i, tok_index) in six.iteritems(tok_ns_to_s_map): - tok_s_to_ns_map[tok_index] = i - - orig_start_position = None - if start_position in tok_s_to_ns_map: - ns_start_position = tok_s_to_ns_map[start_position] - if ns_start_position in orig_ns_to_s_map: - orig_start_position = orig_ns_to_s_map[ns_start_position] - - if orig_start_position is None: - if FLAGS_verbose_logging: - tf.logging.info("Couldn't map start position") - return orig_text - - orig_end_position = None - if end_position in tok_s_to_ns_map: - ns_end_position = tok_s_to_ns_map[end_position] - if ns_end_position in orig_ns_to_s_map: - orig_end_position = orig_ns_to_s_map[ns_end_position] - - if orig_end_position is None: - if FLAGS_verbose_logging: - tf.logging.info("Couldn't map end position") - return orig_text - - output_text = orig_text[orig_start_position:(orig_end_position + 1)] - return output_text - - -def _get_best_indexes(logits, n_best_size): - """Get the n-best logits from a list.""" - index_and_score = sorted( - enumerate(logits), key=lambda x: x[1], reverse=True) - - best_indexes = [] - for i in range(len(index_and_score)): - if i >= n_best_size: - break - best_indexes.append(index_and_score[i][0]) - return best_indexes - - -def _compute_softmax(scores): - """Compute softmax probability over raw logits.""" - if not scores: - return [] - - max_score = None - for score in scores: - if max_score is None or score > max_score: - max_score = score - - exp_scores = [] - total_sum = 0.0 - for score in scores: - x = math.exp(score - max_score) - exp_scores.append(x) - total_sum += x - - probs = [] - for score in exp_scores: - probs.append(score / total_sum) - return probs - - -class FeatureWriter(object): - """Writes InputFeature to TF example file.""" - - def __init__(self, filename, is_training): - self.filename = filename - self.is_training = is_training - self.num_features = 0 - self._writer = tf.python_io.TFRecordWriter(filename) - - def process_feature(self, feature): - """Write a InputFeature to the TFRecordWriter as a tf.train.Example.""" - self.num_features += 1 - - def create_int_feature(values): - feature = tf.train.Feature( - int64_list=tf.train.Int64List(value=list(values))) - return feature - - features = collections.OrderedDict() - features["unique_ids"] = create_int_feature([feature.unique_id]) - features["input_ids"] = create_int_feature(feature.input_ids) - features["input_mask"] = create_int_feature(feature.input_mask) - features["segment_ids"] = create_int_feature(feature.segment_ids) - - if self.is_training: - features["start_positions"] = create_int_feature( - [feature.start_position]) - features["end_positions"] = create_int_feature( - [feature.end_position]) - impossible = 0 - if feature.is_impossible: - impossible = 1 - features["is_impossible"] = create_int_feature([impossible]) - - tf_example = tf.train.Example( - features=tf.train.Features(feature=features)) - self._writer.write(tf_example.SerializeToString()) - - def close(self): - self._writer.close() - - -def validate_flags_or_throw(bert_config): - """Validate the input FLAGS or throw an exception.""" - tokenization.validate_case_matches_checkpoint(FLAGS_do_lower_case, - FLAGS_init_checkpoint_squad) - - # if not FLAGS_do_train and not FLAGS_do_predict: - # raise ValueError( - # "At least one of `do_train` or `do_predict` must be True.") - - # if FLAGS_do_train: - # if not FLAGS_train_file: - # raise ValueError( - # "If `do_train` is True, then `train_file` must be specified.") - # if FLAGS_do_predict: - # if not FLAGS_predict_file: - # raise ValueError( - # "If `do_predict` is True, then `predict_file` must be specified.") - - # if FLAGS_max_seq_length > bert_config.max_position_embeddings: - # raise ValueError( - # "Cannot use sequence length %d because the BERT model " - # "was only trained up to sequence length %d" % - # (FLAGS_max_seq_length, bert_config.max_position_embeddings)) - - # if FLAGS_max_seq_length <= FLAGS_max_query_length + 3: - # raise ValueError( - # "The max_seq_length (%d) must be greater than max_query_length " - # "(%d) + 3" % (FLAGS_max_seq_length, FLAGS_max_query_length)) diff --git a/scripts/api_squad_offline.py b/scripts/api_squad_offline.py deleted file mode 100644 index 8a05141..0000000 --- a/scripts/api_squad_offline.py +++ /dev/null @@ -1,264 +0,0 @@ -#!/usr/bin/env python -# coding: utf-8 - -# auther = 'liuzhiyong' -# date = 20201204 - - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -from flask import Flask, abort, request, jsonify -from concurrent.futures import ThreadPoolExecutor - -import os -import random -import modeling -import tokenization -import tensorflow as tf -import sys - -from api_squad import FLAGS_max_seq_length -from api_squad import FLAGS_do_lower_case -from api_squad import FLAGS_use_tpu -from api_squad import FLAGS_tpu_name -from api_squad import FLAGS_tpu_zone -from api_squad import FLAGS_gcp_project -from api_squad import FLAGS_master -from api_squad import FLAGS_save_checkpoints_steps -from api_squad import FLAGS_iterations_per_loop -from api_squad import FLAGS_num_tpu_cores -from api_squad import FLAGS_warmup_proportion -from api_squad import FLAGS_doc_stride -from api_squad import model_fn_builder -from api_squad import FeatureWriter -from api_squad import convert_examples_to_features -from api_squad import input_fn_builder - -from global_setting import CUDA_VISIBLE_DEVICES -from global_setting import validate_flags_or_throw -from global_setting import read_squad_examples -from global_setting import FLAGS_bert_config_file, FLAGS_vocab_file, FLAGS_init_checkpoint_squad, questions - -os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" -os.environ["CUDA_VISIBLE_DEVICES"] = str(CUDA_VISIBLE_DEVICES) - -app = Flask(__name__) - - -def serving_input_fn(): - input_ids = tf.placeholder(tf.int32, [None, FLAGS_max_seq_length], name='input_ids') - unique_id = tf.placeholder(tf.int32, [None]) - input_mask = tf.placeholder(tf.int32, [None, FLAGS_max_seq_length], name='input_mask') - segment_ids = tf.placeholder(tf.int32, [None, FLAGS_max_seq_length], name='segment_ids') - input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({ - 'input_ids': input_ids, - 'input_mask': input_mask, - 'segment_ids': segment_ids, - 'unique_ids': unique_id, - })() - return input_fn - - -def main(FLAGS_output_dir, FLAGS_init_checkpoint_squad, FLAGS_export_dir, FLAGS_predict_file=None, FLAGS_train_file=None, FLAGS_do_predict=False, - FLAGS_do_train=False, FLAGS_train_batch_size=16, FLAGS_predict_batch_size=8, FLAGS_learning_rate=5e-5, FLAGS_num_train_epochs=3.0, - FLAGS_max_answer_length=100, FLAGS_max_query_length=64, FLAGS_version_2_with_negative=False): - tf.logging.set_verbosity(tf.logging.INFO) - - bert_config = modeling.BertConfig.from_json_file(FLAGS_bert_config_file) - - validate_flags_or_throw(bert_config) - - tf.gfile.MakeDirs(FLAGS_output_dir) - - tokenizer = tokenization.FullTokenizer( - vocab_file=FLAGS_vocab_file, do_lower_case=FLAGS_do_lower_case) - - tpu_cluster_resolver = None - if FLAGS_use_tpu and FLAGS_tpu_name: - tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( - FLAGS_tpu_name, zone=FLAGS_tpu_zone, project=FLAGS_gcp_project) - is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 - run_config = tf.contrib.tpu.RunConfig( - cluster=tpu_cluster_resolver, - master=FLAGS_master, - model_dir=FLAGS_output_dir, - save_checkpoints_steps=FLAGS_save_checkpoints_steps, - tpu_config=tf.contrib.tpu.TPUConfig( - iterations_per_loop=FLAGS_iterations_per_loop, - num_shards=FLAGS_num_tpu_cores, - per_host_input_for_training=is_per_host)) - - train_examples = None - num_train_steps = None - num_warmup_steps = None - - if FLAGS_do_train: - train_examples = read_squad_examples( - input_file=FLAGS_train_file, is_training=True, questions=questions, FLAGS_version_2_with_negative=FLAGS_version_2_with_negative) - num_train_steps = int( - len(train_examples) / FLAGS_train_batch_size * FLAGS_num_train_epochs) - num_warmup_steps = int(num_train_steps * FLAGS_warmup_proportion) - - # Pre-shuffle the input to avoid having to make a very large shuffle - # buffer in in the `input_fn`. - rng = random.Random(12345) - rng.shuffle(train_examples) - - model_fn = model_fn_builder( - bert_config=bert_config, - init_checkpoint=FLAGS_init_checkpoint_squad, - learning_rate=FLAGS_learning_rate, - num_train_steps=num_train_steps, - num_warmup_steps=num_warmup_steps, - use_tpu=FLAGS_use_tpu, - use_one_hot_embeddings=FLAGS_use_tpu) - - # If TPU is not available, this will fall back to normal Estimator on CPU - # or GPU. - estimator = tf.contrib.tpu.TPUEstimator( - use_tpu=FLAGS_use_tpu, - model_fn=model_fn, - config=run_config, - train_batch_size=FLAGS_train_batch_size, - predict_batch_size=FLAGS_predict_batch_size) - - if FLAGS_do_train: - # We write to a temporary file to avoid storing very large constant tensors - # in memory. - train_writer = FeatureWriter( - filename=os.path.join(FLAGS_output_dir, "train.tf_record"), - is_training=True) - convert_examples_to_features( - examples=train_examples, - tokenizer=tokenizer, - max_seq_length=FLAGS_max_seq_length, - doc_stride=FLAGS_doc_stride, - max_query_length=FLAGS_max_query_length, - is_training=True, - output_fn=train_writer.process_feature) - train_writer.close() - - tf.logging.info("***** Running training *****") - tf.logging.info(" Num orig examples = %d", len(train_examples)) - tf.logging.info(" Num split examples = %d", train_writer.num_features) - tf.logging.info(" Batch size = %d", FLAGS_train_batch_size) - tf.logging.info(" Num steps = %d", num_train_steps) - del train_examples - - train_input_fn = input_fn_builder( - input_file=train_writer.filename, - seq_length=FLAGS_max_seq_length, - is_training=True, - drop_remainder=True) - estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) - estimator._export_to_tpu = False - estimator.export_savedmodel(FLAGS_export_dir, serving_input_fn) - return 'success' - - -class AI2Flask: - - def __init__(self, port=5000, workers=4): - self.app = app - self.port = port - p = ThreadPoolExecutor(max_workers=workers) - threads_mapping = {} - - def check_threads(): - flag = False - pop_keys = set() - if len(threads_mapping) >= workers: - for k, v in threads_mapping.items(): - if v.running(): - flag = True - else: - pop_keys.add(k) - - for k in pop_keys: - threads_mapping.pop(k) - - return flag - - @app.route('/api/offline/train', methods=['POST']) - def text_analyse(): - if not request.json or 'task_id' not in request.json: - abort(400) - if check_threads(): - return jsonify({"Des": "Task list is full. Can not submit new task! ", "Result": "Failed to submit the training task ", "Status": "ERROR"}) - - else: - try: - FLAGS_train_batch_size = request.json['FLAGS_train_batch_size'] - except: - FLAGS_train_batch_size = 16 - try: - FLAGS_learning_rate = request.json['FLAGS_learning_rate'] - except: - FLAGS_learning_rate = 5e-5 - try: - FLAGS_num_train_epochs = request.json['FLAGS_num_train_epochs'] - except: - FLAGS_num_train_epochs = 3.0 - try: - FLAGS_max_answer_length = request.json['FLAGS_max_answer_length'] - except: - FLAGS_max_answer_length = 100 - try: - FLAGS_max_query_length = request.json['FLAGS_max_query_length'] - except: - FLAGS_max_query_length = 64 - try: - FLAGS_version_2_with_negative = request.json['FLAGS_version_2_with_negative'] - except: - FLAGS_version_2_with_negative = True - - try: - FLAGS_predict_file = None - FLAGS_predict_batch_size = 8 - FLAGS_do_predict = False - FLAGS_do_train = True - FLAGS_output_dir = request.json['FLAGS_output_dir'] - FLAGS_train_file = request.json['FLAGS_train_file'] - FLAGS_export_dir = request.json['FLAGS_export_dir'] - task_id = request.json['task_id'] - - task = p.submit(main, FLAGS_output_dir, FLAGS_init_checkpoint_squad, FLAGS_export_dir, FLAGS_predict_file, FLAGS_train_file, FLAGS_do_predict, - FLAGS_do_train, FLAGS_train_batch_size, FLAGS_predict_batch_size, FLAGS_learning_rate, FLAGS_num_train_epochs, - FLAGS_max_answer_length, FLAGS_max_query_length, FLAGS_version_2_with_negative) - threads_mapping[task_id] = task - - return jsonify({"message": "Task submitted successfully", "status": "0"}) - - except KeyError as e: - return jsonify({"Des": 'KeyError: {}'.format(str(e)), "Result": 'None', "Status": "Error"}) - except Exception as e: - return jsonify({"Des": str(e), "Result": 'None', "Status": "Error"}) - - @app.route('/api/offline/status', methods=['POST']) - def todo_status(): - task_id = request.json['task_id'] - task = threads_mapping.get(task_id, None) - try: - if task is None: - return jsonify({'Des': 'The task was not found', 'Status': 'ERROR'}) - else: - if task.done(): - print(task.result) - if task.result() == 'success': - return jsonify({'Des': 'DONE', 'Status': 'OK'}) - else: - return jsonify({'Des': 'Program execution error. Please check the execution log ', 'Status': 'ERROR'}) - - else: - return jsonify({'Des': 'RUNNING', 'Status': 'OK'}) - except Exception as e: - return jsonify({'Des': str(e), 'Status': 'ERROR'}) - - def start(self): - self.app.run(host="0.0.0.0", port=self.port, threaded=True) - - -if __name__ == '__main__': - port = sys.argv[1] - AI2Flask(port=port).start() diff --git a/scripts/api_squad_online.py b/scripts/api_squad_online.py deleted file mode 100644 index abe3d5f..0000000 --- a/scripts/api_squad_online.py +++ /dev/null @@ -1,81 +0,0 @@ -#!/usr/bin/env python -# coding: utf-8 - -# auther = 'liuzhiyong' -# date = 20201204 - - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -import json -import sys -from flask import Flask, abort, request, jsonify - -import os -from global_setting import questions, tokenizer_ch, CUDA_VISIBLE_DEVICES -from create_squad_features import get_squad_feature_result - - -app = Flask(__name__) - - -class AI2Flask: - - def __init__(self, port=5000, workers=4): - self.app = app - self.port = port - - @app.route('/api/online/predict', methods=['POST']) - def text_analyse(): - if not request.json: - abort(400) - - else: - try: - try: - title = request.json['title'] - except: - title = 'Not available' - text_origin = request.json['text'] - - if len(text_origin) > 800: - text = text_origin[:800] - else: - text = text_origin - - result = {} - for ques in questions: - tmp = get_squad_feature_result(title=title, text=text, tokenizer=tokenizer_ch, question=[ques], url='http://localhost:8502/v1/models/predict:predict') - result[ques] = dict(tmp)[ques] - - print('finished!!') - return json.dumps(result) - - except KeyError as e: - return jsonify({"Des": 'KeyError: {}'.format(str(e)), "Result": 'None', "Status": "Error"}) - except Exception as e: - return jsonify({"Des": str(e), "Result": 'None', "Status": "Error"}) - - @app.route('/api/online/load', methods=['POST']) - def load_model(): - if not request.json: - abort(400) - else: - try: - path = request.json['path'] - flag = os.system('./load_model.sh ' + path + ' ' + CUDA_VISIBLE_DEVICES) - if flag == 0: - return jsonify({"Des": "Model loaded successfully !", "Status": "OK"}) - else: - return jsonify({"Des": "Model loaded failed , check the logs !", "Status": "Error"}) - except Exception as e: - return jsonify({"Des": str(e), "Status": "Error"}) - - def start(self): - self.app.run(host="0.0.0.0", port=self.port, threaded=True) - - -if __name__ == '__main__': - port = sys.argv[1] - AI2Flask(port=port).start() diff --git a/scripts/create_squad_features.py b/scripts/create_squad_features.py deleted file mode 100644 index ce274e0..0000000 --- a/scripts/create_squad_features.py +++ /dev/null @@ -1,721 +0,0 @@ -#!/usr/bin/env python -# coding: utf-8 - -# auther = 'liuzhiyong' -# date = 20201204 - - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -import json - -import collections -import math -import tokenization -import six -import tensorflow as tf -import requests - -from global_setting import _improve_answer_span - -version_2_with_negative = True - - -def get_squad_feature_result(title, text, tokenizer, question, url): - - def make_json(title, text, question): - res = {} - res['data'] = [] - data_inside = {} - - data_inside['title'] = title - data_inside['paragraphs'] = [] - paragraphs_inside = {} - paragraphs_inside['context'] = text - paragraphs_inside['qas'] = [] - for ques in question: - qas_inside = {} - qas_inside['answers'] = [] - - answer_inside = {} - - qas_inside['id'] = ques - qas_inside['question'] = ques - qas_inside['answers'].append(answer_inside.copy()) - paragraphs_inside['qas'].append(qas_inside.copy()) - data_inside['paragraphs'].append(paragraphs_inside.copy()) - - res['data'].append(data_inside.copy()) - return json.dumps(res) - - def _compute_softmax(scores): - """Compute softmax probability over raw logits.""" - if not scores: - return [] - - max_score = None - for score in scores: - if max_score is None or score > max_score: - max_score = score - - exp_scores = [] - total_sum = 0.0 - for score in scores: - x = math.exp(score - max_score) - exp_scores.append(x) - total_sum += x - - probs = [] - for score in exp_scores: - probs.append(score / total_sum) - return probs - - def get_final_text(pred_text, orig_text, do_lower_case): - - def _strip_spaces(text): - ns_chars = [] - ns_to_s_map = collections.OrderedDict() - for (i, c) in enumerate(text): - if c == " ": - continue - ns_to_s_map[len(ns_chars)] = i - ns_chars.append(c) - ns_text = "".join(ns_chars) - return (ns_text, ns_to_s_map) - - # We first tokenize `orig_text`, strip whitespace from the result - # and `pred_text`, and check if they are the same length. If they are - # NOT the same length, the heuristic has failed. If they are the same - # length, we assume the characters are one-to-one aligned. - tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) - - tok_text = " ".join(tokenizer.tokenize(orig_text)) - - start_position = tok_text.find(pred_text) - if start_position == -1: - if 0: - tf.logging.info( - "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) - return orig_text - end_position = start_position + len(pred_text) - 1 - - (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) - (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) - - if len(orig_ns_text) != len(tok_ns_text): - if 0: - tf.logging.info("Length not equal after stripping spaces: '%s' vs '%s'", - orig_ns_text, tok_ns_text) - return orig_text - - # We then project the characters in `pred_text` back to `orig_text` using - # the character-to-character alignment. - tok_s_to_ns_map = {} - for (i, tok_index) in six.iteritems(tok_ns_to_s_map): - tok_s_to_ns_map[tok_index] = i - - orig_start_position = None - if start_position in tok_s_to_ns_map: - ns_start_position = tok_s_to_ns_map[start_position] - if ns_start_position in orig_ns_to_s_map: - orig_start_position = orig_ns_to_s_map[ns_start_position] - - if orig_start_position is None: - if 0: - tf.logging.info("Couldn't map start position") - return orig_text - - orig_end_position = None - if end_position in tok_s_to_ns_map: - ns_end_position = tok_s_to_ns_map[end_position] - if ns_end_position in orig_ns_to_s_map: - orig_end_position = orig_ns_to_s_map[ns_end_position] - - if orig_end_position is None: - if 0: - tf.logging.info("Couldn't map end position") - return orig_text - - output_text = orig_text[orig_start_position:(orig_end_position + 1)] - return output_text - - def _get_best_indexes(logits, n_best_size): - - index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) - - best_indexes = [] - for i in range(len(index_and_score)): - if i >= n_best_size: - break - best_indexes.append(index_and_score[i][0]) - return best_indexes - - RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"]) - - def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case): - """Write final predictions to the json file and log-odds of null if needed.""" - - example_index_to_features = collections.defaultdict(list) - for feature in all_features: - example_index_to_features[feature.example_index].append(feature) - - unique_id_to_result = {} - for result in all_results: - unique_id_to_result[result.unique_id] = result - - _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name - "PrelimPrediction", - ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) - - all_predictions = collections.OrderedDict() - all_nbest_json = collections.OrderedDict() - scores_diff_json = collections.OrderedDict() - - for (example_index, example) in enumerate(all_examples): - features = example_index_to_features[example_index] - - prelim_predictions = [] - # keep track of the minimum score of null start+end of position 0 - score_null = 1000000 # large and positive - min_null_feature_index = 0 # the paragraph slice with min mull score - null_start_logit = 0 # the start logit at the slice with min null score - null_end_logit = 0 # the end logit at the slice with min null score - for (feature_index, feature) in enumerate(features): - result = unique_id_to_result[feature.unique_id] - start_indexes = _get_best_indexes(result.start_logits, n_best_size) - end_indexes = _get_best_indexes(result.end_logits, n_best_size) - # if we could have irrelevant answers, get the min score of irrelevant - if version_2_with_negative: - feature_null_score = result.start_logits[0] + result.end_logits[0] - if feature_null_score < score_null: - score_null = feature_null_score - min_null_feature_index = feature_index - null_start_logit = result.start_logits[0] - null_end_logit = result.end_logits[0] - - for start_index in start_indexes: - for end_index in end_indexes: - # We could hypothetically create invalid predictions, e.g., predict - # that the start of the span is in the question. We throw out all - # invalid predictions. - if start_index >= len(feature.tokens): - continue - if end_index >= len(feature.tokens): - continue - if start_index not in feature.token_to_orig_map: - continue - if end_index not in feature.token_to_orig_map: - continue - if not feature.token_is_max_context.get(start_index, False): - continue - if end_index < start_index: - continue - length = end_index - start_index + 1 - if length > max_answer_length: - continue - prelim_predictions.append( - _PrelimPrediction( - feature_index=feature_index, - start_index=start_index, - end_index=end_index, - start_logit=result.start_logits[start_index], - end_logit=result.end_logits[end_index])) - - if version_2_with_negative: - prelim_predictions.append( - _PrelimPrediction( - feature_index=min_null_feature_index, - start_index=0, - end_index=0, - start_logit=null_start_logit, - end_logit=null_end_logit)) - prelim_predictions = sorted( - prelim_predictions, - key=lambda x: (x.start_logit + x.end_logit), - reverse=True) - - _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name - "NbestPrediction", ["text", "start_logit", "end_logit"]) - - seen_predictions = {} - nbest = [] - for pred in prelim_predictions: - if len(nbest) >= n_best_size: - break - feature = features[pred.feature_index] - if pred.start_index > 0: # this is a non-null prediction - tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] - orig_doc_start = feature.token_to_orig_map[pred.start_index] - orig_doc_end = feature.token_to_orig_map[pred.end_index] - orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] - tok_text = " ".join(tok_tokens) - - # De-tokenize WordPieces that have been split off. - tok_text = tok_text.replace(" ##", "") - tok_text = tok_text.replace("##", "") - - # Clean whitespace - tok_text = tok_text.strip() - tok_text = " ".join(tok_text.split()) - orig_text = " ".join(orig_tokens) - - final_text = get_final_text(tok_text, orig_text, do_lower_case) - if final_text in seen_predictions: - continue - - seen_predictions[final_text] = True - else: - final_text = "" - seen_predictions[final_text] = True - - nbest.append( - _NbestPrediction( - text=final_text, - start_logit=pred.start_logit, - end_logit=pred.end_logit)) - - # if we didn't inlude the empty option in the n-best, inlcude it - if version_2_with_negative: - if "" not in seen_predictions: - nbest.append( - _NbestPrediction( - text="", start_logit=null_start_logit, - end_logit=null_end_logit)) - - # In very rare edge cases we could have no valid predictions. So we - # just create a nonce prediction in this case to avoid failure. - if not nbest: - nbest.append( - _NbestPrediction(text="", start_logit=0.0, end_logit=0.0)) - - assert len(nbest) >= 1 - - total_scores = [] - best_non_null_entry = None - for entry in nbest: - total_scores.append(entry.start_logit + entry.end_logit) - if not best_non_null_entry: - if entry.text: - best_non_null_entry = entry - - probs = _compute_softmax(total_scores) - - nbest_json = [] - for (i, entry) in enumerate(nbest): - output = collections.OrderedDict() - output["text"] = entry.text - output["probability"] = probs[i] - output["start_logit"] = entry.start_logit - output["end_logit"] = entry.end_logit - nbest_json.append(output) - - assert len(nbest_json) >= 1 - - if not version_2_with_negative: - all_predictions[example.qas_id] = nbest_json[0]["text"] - else: - # predict "" iff the null score - the score of best non-null > threshold - score_diff = score_null - best_non_null_entry.start_logit - ( - best_non_null_entry.end_logit) - scores_diff_json[example.qas_id] = score_diff - if score_diff > 0: - all_predictions[example.qas_id] = "" - else: - all_predictions[example.qas_id] = best_non_null_entry.text - - all_nbest_json[example.qas_id] = nbest_json - return all_predictions - - def create_int_feature(values): - - feature = tf.train.Feature( - int64_list=tf.train.Int64List(value=list(values))) - return feature - - class InputFeatures(object): - """A single set of features of data.""" - - def __init__(self, - unique_id, - example_index, - doc_span_index, - tokens, - token_to_orig_map, - token_is_max_context, - input_ids, - input_mask, - segment_ids, - start_position=None, - end_position=None, - is_impossible=None): - self.unique_id = unique_id - self.example_index = example_index - self.doc_span_index = doc_span_index - self.tokens = tokens - self.token_to_orig_map = token_to_orig_map - self.token_is_max_context = token_is_max_context - self.input_ids = input_ids - self.input_mask = input_mask - self.segment_ids = segment_ids - self.start_position = start_position - self.end_position = end_position - self.is_impossible = is_impossible - - def _check_is_max_context(doc_spans, cur_span_index, position): - """Check if this is the 'max context' doc span for the token.""" - - # Because of the sliding window approach taken to scoring documents, a single - # token can appear in multiple documents. E.g. - # Doc: the man went to the store and bought a gallon of milk - # Span A: the man went to the - # Span B: to the store and bought - # Span C: and bought a gallon of - # ... - # - # Now the word 'bought' will have two scores from spans B and C. We only - # want to consider the score with "maximum context", which we define as - # the *minimum* of its left and right context (the *sum* of left and - # right context will always be the same, of course). - # - # In the example the maximum context for 'bought' would be span C since - # it has 1 left context and 3 right context, while span B has 4 left context - # and 0 right context. - best_score = None - best_span_index = None - for (span_index, doc_span) in enumerate(doc_spans): - end = doc_span.start + doc_span.length - 1 - if position < doc_span.start: - continue - if position > end: - continue - num_left_context = position - doc_span.start - num_right_context = end - position - score = min(num_left_context, num_right_context) + 0.01 * doc_span.length - if best_score is None or score > best_score: - best_score = score - best_span_index = span_index - - return cur_span_index == best_span_index - - def convert_examples_to_features(examples, tokenizer, max_seq_length, - doc_stride, max_query_length, is_training): - """Loads a data file into a list of `InputBatch`s.""" - - unique_id = 1000000000 - result = [] - - for (example_index, example) in enumerate(examples): - query_tokens = tokenizer.tokenize(example.question_text) - - if len(query_tokens) > max_query_length: - query_tokens = query_tokens[0:max_query_length] - - tok_to_orig_index = [] - orig_to_tok_index = [] - all_doc_tokens = [] - for (i, token) in enumerate(example.doc_tokens): - orig_to_tok_index.append(len(all_doc_tokens)) - sub_tokens = tokenizer.tokenize(token) - for sub_token in sub_tokens: - tok_to_orig_index.append(i) - all_doc_tokens.append(sub_token) - - tok_start_position = None - tok_end_position = None - if is_training and example.is_impossible: - tok_start_position = -1 - tok_end_position = -1 - if is_training and not example.is_impossible: - tok_start_position = orig_to_tok_index[example.start_position] - if example.end_position < len(example.doc_tokens) - 1: - tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 - else: - tok_end_position = len(all_doc_tokens) - 1 - (tok_start_position, tok_end_position) = _improve_answer_span( - all_doc_tokens, tok_start_position, tok_end_position, tokenizer, - example.orig_answer_text) - - # The -3 accounts for [CLS], [SEP] and [SEP] - max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 - - # We can have documents that are longer than the maximum sequence length. - # To deal with this we do a sliding window approach, where we take chunks - # of the up to our max length with a stride of `doc_stride`. - _DocSpan = collections.namedtuple( # pylint: disable=invalid-name - "DocSpan", ["start", "length"]) - doc_spans = [] - start_offset = 0 - while start_offset < len(all_doc_tokens): - length = len(all_doc_tokens) - start_offset - if length > max_tokens_for_doc: - length = max_tokens_for_doc - doc_spans.append(_DocSpan(start=start_offset, length=length)) - if start_offset + length == len(all_doc_tokens): - break - start_offset += min(length, doc_stride) - - for (doc_span_index, doc_span) in enumerate(doc_spans): - tokens = [] - token_to_orig_map = {} - token_is_max_context = {} - segment_ids = [] - tokens.append("[CLS]") - segment_ids.append(0) - for token in query_tokens: - tokens.append(token) - segment_ids.append(0) - tokens.append("[SEP]") - segment_ids.append(0) - - for i in range(doc_span.length): - split_token_index = doc_span.start + i - token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] - - is_max_context = _check_is_max_context(doc_spans, doc_span_index, - split_token_index) - token_is_max_context[len(tokens)] = is_max_context - tokens.append(all_doc_tokens[split_token_index]) - segment_ids.append(1) - tokens.append("[SEP]") - segment_ids.append(1) - - input_ids = tokenizer.convert_tokens_to_ids(tokens) - - # The mask has 1 for real tokens and 0 for padding tokens. Only real - # tokens are attended to. - input_mask = [1] * len(input_ids) - - # Zero-pad up to the sequence length. - while len(input_ids) < max_seq_length: - input_ids.append(0) - input_mask.append(0) - segment_ids.append(0) - - assert len(input_ids) == max_seq_length - assert len(input_mask) == max_seq_length - assert len(segment_ids) == max_seq_length - - start_position = None - end_position = None - if is_training and not example.is_impossible: - # For training, if our document chunk does not contain an annotation - # we throw it out, since there is nothing to predict. - doc_start = doc_span.start - doc_end = doc_span.start + doc_span.length - 1 - out_of_span = False - if not (tok_start_position >= doc_start and tok_end_position <= doc_end): - out_of_span = True - if out_of_span: - start_position = 0 - end_position = 0 - else: - doc_offset = len(query_tokens) + 2 - start_position = tok_start_position - doc_start + doc_offset - end_position = tok_end_position - doc_start + doc_offset - - if is_training and example.is_impossible: - start_position = 0 - end_position = 0 - - if example_index < 20: - tf.logging.info("*** Example ***") - tf.logging.info("unique_id: %s" % (unique_id)) - tf.logging.info("example_index: %s" % (example_index)) - tf.logging.info("doc_span_index: %s" % (doc_span_index)) - tf.logging.info("tokens: %s" % " ".join( - [tokenization.printable_text(x) for x in tokens])) - tf.logging.info("token_to_orig_map: %s" % " ".join( - ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) - tf.logging.info("token_is_max_context: %s" % " ".join([ - "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) - ])) - tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) - tf.logging.info( - "input_mask: %s" % " ".join([str(x) for x in input_mask])) - tf.logging.info( - "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) - if is_training and example.is_impossible: - tf.logging.info("impossible example") - if is_training and not example.is_impossible: - answer_text = " ".join(tokens[start_position:(end_position + 1)]) - tf.logging.info("start_position: %d" % (start_position)) - tf.logging.info("end_position: %d" % (end_position)) - tf.logging.info( - "answer: %s" % (tokenization.printable_text(answer_text))) - - feature = InputFeatures( - unique_id=unique_id, - example_index=example_index, - doc_span_index=doc_span_index, - tokens=tokens, - token_to_orig_map=token_to_orig_map, - token_is_max_context=token_is_max_context, - input_ids=input_ids, - input_mask=input_mask, - segment_ids=segment_ids, - start_position=start_position, - end_position=end_position, - is_impossible=example.is_impossible) - - # Run callback - - result.append(feature) - unique_id += 1 - return result - - class SquadExample(object): - - def __init__(self, - qas_id, - question_text, - doc_tokens, - orig_answer_text=None, - start_position=None, - end_position=None, - is_impossible=False): - self.qas_id = qas_id - self.question_text = question_text - self.doc_tokens = doc_tokens - self.orig_answer_text = orig_answer_text - self.start_position = start_position - self.end_position = end_position - self.is_impossible = is_impossible - - def __str__(self): - return self.__repr__() - - def __repr__(self): - s = "" - s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) - s += ", question_text: %s" % ( - tokenization.printable_text(self.question_text)) - s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) - if self.start_position: - s += ", start_position: %d" % (self.start_position) - if self.start_position: - s += ", end_position: %d" % (self.end_position) - if self.start_position: - s += ", is_impossible: %r" % (self.is_impossible) - return s - - def read_squad_examples(input_file, is_training): - """Read a SQuAD json file into a list of SquadExample.""" - - input_data = json.loads(input_file)["data"] - - def is_whitespace(c): - if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: - return True - return False - - examples = [] - for entry in input_data: - for paragraph in entry["paragraphs"]: - paragraph_text = paragraph["context"] - doc_tokens = [] - char_to_word_offset = [] - prev_is_whitespace = True - for c in paragraph_text: - if is_whitespace(c): - prev_is_whitespace = True - else: - if prev_is_whitespace: - doc_tokens.append(c) - else: - doc_tokens[-1] += c - prev_is_whitespace = False - char_to_word_offset.append(len(doc_tokens) - 1) - - for qa in paragraph["qas"]: - qas_id = qa["id"] - question_text = qa["question"] - start_position = None - end_position = None - orig_answer_text = None - is_impossible = False - if is_training: - - if (len(qa["answers"]) != 1) and (not is_impossible): - raise ValueError( - "For training, each question should have exactly 1 answer.") - if not is_impossible: - answer = qa["answers"][0] - orig_answer_text = answer["text"] - answer_offset = answer["answer_start"] - answer_length = len(orig_answer_text) - start_position = char_to_word_offset[answer_offset] - end_position = char_to_word_offset[answer_offset + answer_length - 1] - # Only add answers where the text can be exactly recovered from the - # document. If this CAN'T happen it's likely due to weird Unicode - # stuff so we will just skip the example. - # - # Note that this means for training mode, every example is NOT - # guaranteed to be preserved. - actual_text = " ".join( - doc_tokens[start_position:(end_position + 1)]) - cleaned_answer_text = " ".join( - tokenization.whitespace_tokenize(orig_answer_text)) - if actual_text.find(cleaned_answer_text) == -1: - tf.logging.warning("Could not find answer: '%s' vs. '%s'", - actual_text, cleaned_answer_text) - continue - else: - start_position = -1 - end_position = -1 - orig_answer_text = "" - - example = SquadExample( - qas_id=qas_id, - question_text=question_text, - doc_tokens=doc_tokens, - orig_answer_text=orig_answer_text, - start_position=start_position, - end_position=end_position, - is_impossible=is_impossible) - examples.append(example) - - return examples - - def get_result(title, text, question, url): - - data = make_json(title, text, question) - - examples = read_squad_examples(data, False) - - predict_files = convert_examples_to_features( - examples=examples, - tokenizer=tokenizer, - max_seq_length=512, - doc_stride=128, - max_query_length=100, - is_training=False, - ) - - headers = {"content-type": "application/json"} - all_results = [] - for predict_file in predict_files: - features = {} - features["unique_ids"] = predict_file.unique_id - features["input_mask"] = predict_file.input_mask - features["segment_ids"] = predict_file.segment_ids - features["input_ids"] = predict_file.input_ids - data_list = [] - data_list.append(features) - - data = json.dumps({"instances": data_list}) - - json_response = requests.post(url, data=data, headers=headers) - - x = json.loads(json_response.text) - - all_results.append( - RawResult( - unique_id=predict_file.unique_id, - start_logits=x['predictions'][0]['start_logits'], - end_logits=x['predictions'][0]['end_logits'])) - - result = write_predictions(examples, predict_files, all_results, 20, 64, True) - return result - - return get_result(title, text, question, url) diff --git a/scripts/global_setting.py b/scripts/global_setting.py deleted file mode 100644 index 51dfec1..0000000 --- a/scripts/global_setting.py +++ /dev/null @@ -1,31 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - - -# import collections -# import math -# import modeling -# import optimization -import tokenization -# import six -# import tensorflow as tf -# import os - -# Global variables - -# GPU number, default: -1, means not used -CUDA_VISIBLE_DEVICES = "2" - -# Questions to be trained/predicted -questions = ['Communication Service Name', 'Max Number of UEs', 'Data Rate Downlink', 'Latency', 'Data Rate Uplink', 'Resource Sharing Level', 'Mobility', 'Area'] - -# Configuration file -FLAGS_bert_config_file = '/home/run/uncased_L-12_H-768_A-12/bert_config.json' -FLAGS_vocab_file = '/home/run/uncased_L-12_H-768_A-12/vocab.txt' -FLAGS_init_checkpoint_squad = '/home/run/uncased_L-12_H-768_A-12/bert_model.ckpt' - -max_seq_length = 512 - - -tokenizer_ch = tokenization.FullTokenizer(vocab_file=FLAGS_vocab_file, do_lower_case=True) diff --git a/scripts/load_model.sh b/scripts/load_model.sh deleted file mode 100755 index 1961f6a..0000000 --- a/scripts/load_model.sh +++ /dev/null @@ -1,6 +0,0 @@ -path=$1 -use_gpu=$2 -export CUDA_VISIBLE_DEVICES=$use_gpu -netstat -nap | grep 8502 | awk 'NR==1{printf $7}' | sed 's/\([0-9]*\).*/\1/g' | xargs kill -9 -sleep 5 -nohup tensorflow_model_server --port=8500 --rest_api_port=8502 --model_name=predict --model_base_path=$path > server.log 2>&1 &
\ No newline at end of file |