aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/api_squad.py
diff options
context:
space:
mode:
authorzhaoyehua <zhaoyh6@asiainfo.com>2021-03-24 16:25:33 +0800
committerzhaoyehua <zhaoyh6@asiainfo.com>2021-03-24 16:27:48 +0800
commitdd67db0dede71551c772caa685d3c12a1a3e57d2 (patch)
tree3c36524a6f65e49002f8dd9767445300da343734 /scripts/api_squad.py
parent11b32441cc0235cc5ca4066085a3d8d0253e5789 (diff)
feat:Adjust the directory and increase the image production process
Issue-ID: USECASEUI-525 Change-Id: I7bcbf0b48778fd59946483b253f32dda217913c0 Signed-off-by: zhaoyehua <zhaoyh6@asiainfo.com>
Diffstat (limited to 'scripts/api_squad.py')
-rw-r--r--scripts/api_squad.py1028
1 files changed, 0 insertions, 1028 deletions
diff --git a/scripts/api_squad.py b/scripts/api_squad.py
deleted file mode 100644
index f29a74b..0000000
--- a/scripts/api_squad.py
+++ /dev/null
@@ -1,1028 +0,0 @@
-# coding=utf-8
-# squad interface
-# Required parameters
-# FLAGS_output_dir :the output path of the model training during training process, the output of the trained model, etc.; the output path of the model prediction during predicting process
-# FLAGS_init_checkpoint_squad : model initialization path, use bert pre-trained model for training; use the output path during training for prediction
-# FLAGS_predict_file : the file to be predicted, csv file
-# FLAGS_train_file : file to be trained, csv file
-# FLAGS_do_predict : whether to predict or not
-# FLAGS_do_train : whether to train or not
-# FLAGS_train_batch_size : the batch_size for training, default : 16
-# FLAGS_predict_batch_size : the batch_size when predicting, default: 8
-# FLAGS_learning_rate : the learning_rate at training time, default: 5e-5
-# FLAGS_num_train_epochs : epochs at training time, default: 3
-# FLAGS_max_answer_length : the maximum length of the answer, default: 100 characters
-# FLAGS_max_query_length : the maximum length of the question, default: 64
-# FLAGS_version_2_with_negative : whether there is no answer to the question, default false, must be set to False when reasoning
-
-from __future__ import absolute_import
-from __future__ import division
-from __future__ import print_function
-
-import collections
-import json
-import math
-import modeling
-import optimization
-import tokenization
-import six
-import tensorflow as tf
-import pandas as pd
-from global_setting import FLAGS_init_checkpoint_squad
-
-FLAGS_max_seq_length = 512
-FLAGS_do_lower_case = True
-FLAGS_doc_stride = 128
-
-
-FLAGS_save_checkpoints_steps = 1000
-FLAGS_iterations_per_loop = 1000
-FLAGS_n_best_size = 20
-FLAGS_tpu_zone = None
-FLAGS_tpu_name = None
-FLAGS_num_tpu_cores = 8
-FLAGS_verbose_logging = False
-FLAGS_master = None
-FLAGS_use_tpu = False
-FLAGS_warmup_proportion = 0.1
-FLAGS_gcp_project = None
-FLAGS_null_score_diff_threshold = 0.0
-
-
-def make_json(input_file, questions):
- print(input_file)
- data_train = pd.read_excel(input_file)
- print(444)
- data_train.fillna(0, inplace=True)
- data_train.index = [i for i in range(len(data_train))]
- question = questions
- res = {}
- res['data'] = []
- data_inside = {}
- for i in data_train.index:
- data_inside['title'] = 'Not available'
- data_inside['paragraphs'] = []
- paragraphs_inside = {}
- paragraphs_inside['context'] = data_train.loc[i, 'text']
- paragraphs_inside['qas'] = []
- for ques in question:
- qas_inside = {}
- qas_inside['answers'] = []
- if data_train.loc[i, ques]:
- answer_inside = {}
- answer_inside['text'] = str(data_train.loc[i, ques])
- answer_inside['answer_start'] = paragraphs_inside['context'].find(answer_inside['text'])
- qas_inside['is_impossible'] = 0
- else:
- qas_inside['is_impossible'] = 1
- answer_inside = {}
- qas_inside['id'] = str(i) + ques
- qas_inside['question'] = ques
- qas_inside['answers'].append(answer_inside.copy())
- paragraphs_inside['qas'].append(qas_inside.copy())
- data_inside['paragraphs'].append(paragraphs_inside.copy())
-
- res['data'].append(data_inside.copy())
- print('make json done')
- return json.dumps(res)
-
-
-class SquadExample(object):
- """A single training/test example for simple sequence classification.
-
- For examples without an answer, the start and end position are -1.
- """
-
- def __init__(self,
- qas_id,
- question_text,
- doc_tokens,
- orig_answer_text=None,
- start_position=None,
- end_position=None,
- is_impossible=False):
- self.qas_id = qas_id
- self.question_text = question_text
- self.doc_tokens = doc_tokens
- self.orig_answer_text = orig_answer_text
- self.start_position = start_position
- self.end_position = end_position
- self.is_impossible = is_impossible
-
- def __str__(self):
- return self.__repr__()
-
- def __repr__(self):
- s = ""
- s += "qas_id: %s" % (tokenization.printable_text(self.qas_id))
- s += ", question_text: %s" % (
- tokenization.printable_text(self.question_text))
- s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
- if self.start_position:
- s += ", start_position: %d" % (self.start_position)
- if self.start_position:
- s += ", end_position: %d" % (self.end_position)
- if self.start_position:
- s += ", is_impossible: %r" % (self.is_impossible)
- return s
-
-
-class InputFeatures(object):
- """A single set of features of data."""
-
- def __init__(self,
- unique_id,
- example_index,
- doc_span_index,
- tokens,
- token_to_orig_map,
- token_is_max_context,
- input_ids,
- input_mask,
- segment_ids,
- start_position=None,
- end_position=None,
- is_impossible=None):
- self.unique_id = unique_id
- self.example_index = example_index
- self.doc_span_index = doc_span_index
- self.tokens = tokens
- self.token_to_orig_map = token_to_orig_map
- self.token_is_max_context = token_is_max_context
- self.input_ids = input_ids
- self.input_mask = input_mask
- self.segment_ids = segment_ids
- self.start_position = start_position
- self.end_position = end_position
- self.is_impossible = is_impossible
-
-
-def read_squad_examples(input_file, is_training, questions, FLAGS_version_2_with_negative):
- """Read a SQuAD json file into a list of SquadExample."""
- data = make_json(input_file, questions)
- input_data = json.loads(data)["data"]
-
- def is_whitespace(c):
- if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
- return True
- return False
-
- examples = []
- for entry in input_data:
- for paragraph in entry["paragraphs"]:
- paragraph_text = paragraph["context"]
- doc_tokens = []
- char_to_word_offset = []
- prev_is_whitespace = True
- for c in paragraph_text:
- if is_whitespace(c):
- prev_is_whitespace = True
- else:
- if prev_is_whitespace:
- doc_tokens.append(c)
- else:
- doc_tokens[-1] += c
- prev_is_whitespace = False
- char_to_word_offset.append(len(doc_tokens) - 1)
-
- for qa in paragraph["qas"]:
- qas_id = qa["id"]
- question_text = qa["question"]
- start_position = None
- end_position = None
- orig_answer_text = None
- is_impossible = False
- if is_training:
-
- if FLAGS_version_2_with_negative:
- is_impossible = qa["is_impossible"]
- if (len(qa["answers"]) != 1) and (not is_impossible):
- raise ValueError(
- "For training, each question should have exactly 1 answer.")
- if not is_impossible:
- answer = qa["answers"][0]
- orig_answer_text = answer["text"]
- answer_offset = answer["answer_start"]
- answer_length = len(orig_answer_text)
- start_position = char_to_word_offset[answer_offset]
- end_position = char_to_word_offset[answer_offset + answer_length - 1]
- # Only add answers where the text can be exactly recovered from the
- # document. If this CAN'T happen it's likely due to weird Unicode
- # stuff so we will just skip the example.
- #
- # Note that this means for training mode, every example is NOT
- # guaranteed to be preserved.
- actual_text = " ".join(
- doc_tokens[start_position:(end_position + 1)])
- cleaned_answer_text = " ".join(
- tokenization.whitespace_tokenize(orig_answer_text))
- if actual_text.find(cleaned_answer_text) == -1:
- tf.logging.warning("Could not find answer: '%s' vs. '%s'",
- actual_text, cleaned_answer_text)
- continue
- else:
- start_position = -1
- end_position = -1
- orig_answer_text = ""
-
- example = SquadExample(
- qas_id=qas_id,
- question_text=question_text,
- doc_tokens=doc_tokens,
- orig_answer_text=orig_answer_text,
- start_position=start_position,
- end_position=end_position,
- is_impossible=is_impossible)
- examples.append(example)
-
- return examples
-
-
-def convert_examples_to_features(examples, tokenizer, max_seq_length,
- doc_stride, max_query_length, is_training,
- output_fn):
- """Loads a data file into a list of `InputBatch`s."""
-
- unique_id = 1000000000
-
- for (example_index, example) in enumerate(examples):
- query_tokens = tokenizer.tokenize(example.question_text)
-
- if len(query_tokens) > max_query_length:
- query_tokens = query_tokens[0:max_query_length]
-
- tok_to_orig_index = []
- orig_to_tok_index = []
- all_doc_tokens = []
- for (i, token) in enumerate(example.doc_tokens):
- orig_to_tok_index.append(len(all_doc_tokens))
- sub_tokens = tokenizer.tokenize(token)
- for sub_token in sub_tokens:
- tok_to_orig_index.append(i)
- all_doc_tokens.append(sub_token)
-
- tok_start_position = None
- tok_end_position = None
- if is_training and example.is_impossible:
- tok_start_position = -1
- tok_end_position = -1
- if is_training and not example.is_impossible:
- tok_start_position = orig_to_tok_index[example.start_position]
- if example.end_position < len(example.doc_tokens) - 1:
- tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
- else:
- tok_end_position = len(all_doc_tokens) - 1
- (tok_start_position, tok_end_position) = _improve_answer_span(
- all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
- example.orig_answer_text)
-
- # The -3 accounts for [CLS], [SEP] and [SEP]
- max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
-
- # We can have documents that are longer than the maximum sequence length.
- # To deal with this we do a sliding window approach, where we take chunks
- # of the up to our max length with a stride of `doc_stride`.
- _DocSpan = collections.namedtuple( # pylint: disable=invalid-name
- "DocSpan", ["start", "length"])
- doc_spans = []
- start_offset = 0
- while start_offset < len(all_doc_tokens):
- length = len(all_doc_tokens) - start_offset
- if length > max_tokens_for_doc:
- length = max_tokens_for_doc
- doc_spans.append(_DocSpan(start=start_offset, length=length))
- if start_offset + length == len(all_doc_tokens):
- break
- start_offset += min(length, doc_stride)
-
- for (doc_span_index, doc_span) in enumerate(doc_spans):
- tokens = []
- token_to_orig_map = {}
- token_is_max_context = {}
- segment_ids = []
- tokens.append("[CLS]")
- segment_ids.append(0)
- for token in query_tokens:
- tokens.append(token)
- segment_ids.append(0)
- tokens.append("[SEP]")
- segment_ids.append(0)
-
- for i in range(doc_span.length):
- split_token_index = doc_span.start + i
- token_to_orig_map[len(
- tokens)] = tok_to_orig_index[split_token_index]
-
- is_max_context = _check_is_max_context(doc_spans, doc_span_index,
- split_token_index)
- token_is_max_context[len(tokens)] = is_max_context
- tokens.append(all_doc_tokens[split_token_index])
- segment_ids.append(1)
- tokens.append("[SEP]")
- segment_ids.append(1)
-
- input_ids = tokenizer.convert_tokens_to_ids(tokens)
-
- # The mask has 1 for real tokens and 0 for padding tokens. Only real
- # tokens are attended to.
- input_mask = [1] * len(input_ids)
-
- # Zero-pad up to the sequence length.
- while len(input_ids) < max_seq_length:
- input_ids.append(0)
- input_mask.append(0)
- segment_ids.append(0)
-
- assert len(input_ids) == max_seq_length
- assert len(input_mask) == max_seq_length
- assert len(segment_ids) == max_seq_length
-
- start_position = None
- end_position = None
- if is_training and not example.is_impossible:
- # For training, if our document chunk does not contain an annotation
- # we throw it out, since there is nothing to predict.
- doc_start = doc_span.start
- doc_end = doc_span.start + doc_span.length - 1
- out_of_span = False
- if not (tok_start_position >= doc_start and tok_end_position <= doc_end):
- out_of_span = True
- if out_of_span:
- start_position = 0
- end_position = 0
- else:
- doc_offset = len(query_tokens) + 2
- start_position = tok_start_position - doc_start + doc_offset
- end_position = tok_end_position - doc_start + doc_offset
-
- if is_training and example.is_impossible:
- start_position = 0
- end_position = 0
-
- if example_index < 20:
- tf.logging.info("*** Example ***")
- tf.logging.info("unique_id: %s" % (unique_id))
- tf.logging.info("example_index: %s" % (example_index))
- tf.logging.info("doc_span_index: %s" % (doc_span_index))
- tf.logging.info("tokens: %s" % " ".join(
- [tokenization.printable_text(x) for x in tokens]))
- tf.logging.info("token_to_orig_map: %s" % " ".join(
- ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)]))
- tf.logging.info("token_is_max_context: %s" % " ".join([
- "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
- ]))
- tf.logging.info("input_ids: %s" %
- " ".join([str(x) for x in input_ids]))
- tf.logging.info(
- "input_mask: %s" % " ".join([str(x) for x in input_mask]))
- tf.logging.info(
- "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
- if is_training and example.is_impossible:
- tf.logging.info("impossible example")
- if is_training and not example.is_impossible:
- answer_text = " ".join(
- tokens[start_position:(end_position + 1)])
- tf.logging.info("start_position: %d" % (start_position))
- tf.logging.info("end_position: %d" % (end_position))
- tf.logging.info(
- "answer: %s" % (tokenization.printable_text(answer_text)))
-
- feature = InputFeatures(
- unique_id=unique_id,
- example_index=example_index,
- doc_span_index=doc_span_index,
- tokens=tokens,
- token_to_orig_map=token_to_orig_map,
- token_is_max_context=token_is_max_context,
- input_ids=input_ids,
- input_mask=input_mask,
- segment_ids=segment_ids,
- start_position=start_position,
- end_position=end_position,
- is_impossible=example.is_impossible)
-
- # Run callback
- output_fn(feature)
-
- unique_id += 1
-
-
-def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
- orig_answer_text):
- """Returns tokenized answer spans that better match the annotated answer."""
-
- # The SQuAD annotations are character based. We first project them to
- # whitespace-tokenized words. But then after WordPiece tokenization, we can
- # often find a "better match". For example:
- #
- # Question: What year was John Smith born?
- # Context: The leader was John Smith (1895-1943).
- # Answer: 1895
- #
- # The original whitespace-tokenized answer will be "(1895-1943).". However
- # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
- # the exact answer, 1895.
- #
- # However, this is not always possible. Consider the following:
- #
- # Question: What country is the top exporter of electornics?
- # Context: The Japanese electronics industry is the lagest in the world.
- # Answer: Japan
- #
- # In this case, the annotator chose "Japan" as a character sub-span of
- # the word "Japanese". Since our WordPiece tokenizer does not split
- # "Japanese", we just use "Japanese" as the annotation. This is fairly rare
- # in SQuAD, but does happen.
- tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
-
- for new_start in range(input_start, input_end + 1):
- for new_end in range(input_end, new_start - 1, -1):
- text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
- if text_span == tok_answer_text:
- return (new_start, new_end)
-
- return (input_start, input_end)
-
-
-def _check_is_max_context(doc_spans, cur_span_index, position):
- """Check if this is the 'max context' doc span for the token."""
-
- # Because of the sliding window approach taken to scoring documents, a single
- # token can appear in multiple documents. E.g.
- # Doc: the man went to the store and bought a gallon of milk
- # Span A: the man went to the
- # Span B: to the store and bought
- # Span C: and bought a gallon of
- # ...
- #
- # Now the word 'bought' will have two scores from spans B and C. We only
- # want to consider the score with "maximum context", which we define as
- # the *minimum* of its left and right context (the *sum* of left and
- # right context will always be the same, of course).
- #
- # In the example the maximum context for 'bought' would be span C since
- # it has 1 left context and 3 right context, while span B has 4 left context
- # and 0 right context.
- best_score = None
- best_span_index = None
- for (span_index, doc_span) in enumerate(doc_spans):
- end = doc_span.start + doc_span.length - 1
- if position < doc_span.start:
- continue
- if position > end:
- continue
- num_left_context = position - doc_span.start
- num_right_context = end - position
- score = min(num_left_context, num_right_context) + \
- 0.01 * doc_span.length
- if best_score is None or score > best_score:
- best_score = score
- best_span_index = span_index
-
- return cur_span_index == best_span_index
-
-
-def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
- use_one_hot_embeddings):
- """Creates a classification model."""
- model = modeling.BertModel(
- config=bert_config,
- is_training=is_training,
- input_ids=input_ids,
- input_mask=input_mask,
- token_type_ids=segment_ids,
- use_one_hot_embeddings=use_one_hot_embeddings)
-
- final_hidden = model.get_sequence_output()
-
- final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3)
- batch_size = final_hidden_shape[0]
- seq_length = final_hidden_shape[1]
- hidden_size = final_hidden_shape[2]
-
- output_weights = tf.get_variable(
- "cls/squad/output_weights", [2, hidden_size],
- initializer=tf.truncated_normal_initializer(stddev=0.02))
-
- output_bias = tf.get_variable(
- "cls/squad/output_bias", [2], initializer=tf.zeros_initializer())
-
- final_hidden_matrix = tf.reshape(final_hidden,
- [batch_size * seq_length, hidden_size])
- logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True)
- logits = tf.nn.bias_add(logits, output_bias)
-
- logits = tf.reshape(logits, [batch_size, seq_length, 2])
- logits = tf.transpose(logits, [2, 0, 1])
-
- unstacked_logits = tf.unstack(logits, axis=0)
-
- (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1])
-
- return (start_logits, end_logits)
-
-
-def model_fn_builder(bert_config, init_checkpoint, learning_rate,
- num_train_steps, num_warmup_steps, use_tpu,
- use_one_hot_embeddings):
- """Returns `model_fn` closure for TPUEstimator."""
-
- def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
- """The `model_fn` for TPUEstimator."""
-
- tf.logging.info("*** Features ***")
- for name in sorted(features.keys()):
- tf.logging.info(" name = %s, shape = %s" %
- (name, features[name].shape))
-
- input_ids = features["input_ids"]
- input_mask = features["input_mask"]
- segment_ids = features["segment_ids"]
-
- is_training = (mode == tf.estimator.ModeKeys.TRAIN)
-
- (start_logits, end_logits) = create_model(
- bert_config=bert_config,
- is_training=is_training,
- input_ids=input_ids,
- input_mask=input_mask,
- segment_ids=segment_ids,
- use_one_hot_embeddings=use_one_hot_embeddings)
-
- tvars = tf.trainable_variables()
-
- initialized_variable_names = {}
- scaffold_fn = None
- if init_checkpoint:
- (assignment_map, initialized_variable_names
- ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
- if use_tpu:
-
- def tpu_scaffold():
- tf.train.init_from_checkpoint(
- init_checkpoint, assignment_map)
- return tf.train.Scaffold()
-
- scaffold_fn = tpu_scaffold
- else:
- tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
-
- tf.logging.info("**** Trainable Variables ****")
- for var in tvars:
- init_string = ""
- if var.name in initialized_variable_names:
- init_string = ", *INIT_FROM_CKPT*"
- tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
- init_string)
-
- output_spec = None
- if mode == tf.estimator.ModeKeys.TRAIN:
- seq_length = modeling.get_shape_list(input_ids)[1]
-
- def compute_loss(logits, positions):
- one_hot_positions = tf.one_hot(
- positions, depth=seq_length, dtype=tf.float32)
- log_probs = tf.nn.log_softmax(logits, axis=-1)
- loss = -tf.reduce_mean(
- tf.reduce_sum(one_hot_positions * log_probs, axis=-1))
- return loss
-
- start_positions = features["start_positions"]
- end_positions = features["end_positions"]
-
- start_loss = compute_loss(start_logits, start_positions)
- end_loss = compute_loss(end_logits, end_positions)
-
- total_loss = (start_loss + end_loss) / 2.0
-
- train_op = optimization.create_optimizer(
- total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
-
- output_spec = tf.contrib.tpu.TPUEstimatorSpec(
- mode=mode,
- loss=total_loss,
- train_op=train_op,
- scaffold_fn=scaffold_fn)
- elif mode == tf.estimator.ModeKeys.PREDICT:
- predictions = {
- # "unique_ids": unique_ids,
- "start_logits": start_logits,
- "end_logits": end_logits,
- }
- output_spec = tf.contrib.tpu.TPUEstimatorSpec(
- mode=mode, predictions=predictions, scaffold_fn=scaffold_fn)
- else:
- raise ValueError(
- "Only TRAIN and PREDICT modes are supported: %s" % (mode))
-
- return output_spec
-
- return model_fn
-
-
-def input_fn_builder(input_file, seq_length, is_training, drop_remainder):
- """Creates an `input_fn` closure to be passed to TPUEstimator."""
-
- name_to_features = {
- "unique_ids": tf.FixedLenFeature([], tf.int64),
- "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
- "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
- "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
- }
-
- if is_training:
- name_to_features["start_positions"] = tf.FixedLenFeature([], tf.int64)
- name_to_features["end_positions"] = tf.FixedLenFeature([], tf.int64)
-
- def _decode_record(record, name_to_features):
- """Decodes a record to a TensorFlow example."""
- example = tf.parse_single_example(record, name_to_features)
-
- # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
- # So cast all int64 to int32.
- for name in list(example.keys()):
- t = example[name]
- if t.dtype == tf.int64:
- t = tf.to_int32(t)
- example[name] = t
-
- return example
-
- def input_fn(params):
- """The actual input function."""
- batch_size = params["batch_size"]
-
- # For training, we want a lot of parallel reading and shuffling.
- # For eval, we want no shuffling and parallel reading doesn't matter.
- d = tf.data.TFRecordDataset(input_file)
- if is_training:
- d = d.repeat()
- d = d.shuffle(buffer_size=100)
-
- d = d.apply(
- tf.contrib.data.map_and_batch(
- lambda record: _decode_record(record, name_to_features),
- batch_size=batch_size,
- drop_remainder=drop_remainder))
-
- return d
-
- return input_fn
-
-
-RawResult = collections.namedtuple("RawResult",
- ["unique_id", "start_logits", "end_logits"])
-
-
-def write_predictions(all_examples, all_features, all_results, n_best_size,
- max_answer_length, do_lower_case, output_prediction_file,
- output_nbest_file, output_null_log_odds_file, FLAGS_version_2_with_negative):
- """Write final predictions to the json file and log-odds of null if needed."""
- tf.logging.info("Writing predictions to: %s" % (output_prediction_file))
- tf.logging.info("Writing nbest to: %s" % (output_nbest_file))
-
- example_index_to_features = collections.defaultdict(list)
- for feature in all_features:
- example_index_to_features[feature.example_index].append(feature)
-
- unique_id_to_result = {}
- for result in all_results:
- unique_id_to_result[result.unique_id] = result
-
- _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
- "PrelimPrediction",
- ["feature_index", "start_index", "end_index", "start_logit", "end_logit"])
-
- all_predictions = collections.OrderedDict()
- all_nbest_json = collections.OrderedDict()
-
- for (example_index, example) in enumerate(all_examples):
- features = example_index_to_features[example_index]
-
- prelim_predictions = []
- # keep track of the minimum score of null start+end of position 0
- score_null = 1000000 # large and positive
- for (feature_index, feature) in enumerate(features):
- result = unique_id_to_result[feature.unique_id]
- start_indexes = _get_best_indexes(result.start_logits, n_best_size)
- end_indexes = _get_best_indexes(result.end_logits, n_best_size)
- # if we could have irrelevant answers, get the min score of irrelevant
- if FLAGS_version_2_with_negative:
- feature_null_score = result.start_logits[0] + \
- result.end_logits[0]
- if feature_null_score < score_null:
- score_null = feature_null_score
- for start_index in start_indexes:
- for end_index in end_indexes:
- # We could hypothetically create invalid predictions, e.g., predict
- # that the start of the span is in the question. We throw out all
- # invalid predictions.
- if start_index >= len(feature.tokens):
- continue
- if end_index >= len(feature.tokens):
- continue
- if start_index not in feature.token_to_orig_map:
- continue
- if end_index not in feature.token_to_orig_map:
- continue
- if not feature.token_is_max_context.get(start_index, False):
- continue
- if end_index < start_index:
- continue
- length = end_index - start_index + 1
- if length > max_answer_length:
- continue
- prelim_predictions.append(
- _PrelimPrediction(
- feature_index=feature_index,
- start_index=start_index,
- end_index=end_index,
- start_logit=result.start_logits[start_index],
- end_logit=result.end_logits[end_index]))
-
- prelim_predictions = sorted(
- prelim_predictions,
- key=lambda x: (x.start_logit + x.end_logit),
- reverse=True)
-
- _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
- "NbestPrediction", ["text", "start_logit", "end_logit"])
-
- seen_predictions = {}
- nbest = []
- for pred in prelim_predictions:
- if len(nbest) >= n_best_size:
- break
- feature = features[pred.feature_index]
- if pred.start_index > 0: # this is a non-null prediction
- tok_tokens = feature.tokens[pred.start_index:(
- pred.end_index + 1)]
- orig_doc_start = feature.token_to_orig_map[pred.start_index]
- orig_doc_end = feature.token_to_orig_map[pred.end_index]
- orig_tokens = example.doc_tokens[orig_doc_start:(
- orig_doc_end + 1)]
- tok_text = " ".join(tok_tokens)
-
- # De-tokenize WordPieces that have been split off.
- tok_text = tok_text.replace(" ##", "")
- tok_text = tok_text.replace("##", "")
-
- # Clean whitespace
- tok_text = tok_text.strip()
- tok_text = " ".join(tok_text.split())
- orig_text = " ".join(orig_tokens)
-
- final_text = get_final_text(tok_text, orig_text, do_lower_case)
- if final_text in seen_predictions:
- continue
-
- seen_predictions[final_text] = True
- else:
- final_text = ""
- seen_predictions[final_text] = True
-
- nbest.append(
- _NbestPrediction(
- text=final_text,
- start_logit=pred.start_logit,
- end_logit=pred.end_logit))
-
- # In very rare edge cases we could have no valid predictions. So we
- # just create a nonce prediction in this case to avoid failure.
- if not nbest:
- nbest.append(
- _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
-
- assert len(nbest) >= 1
-
- total_scores = []
- best_non_null_entry = None
- for entry in nbest:
- total_scores.append(entry.start_logit + entry.end_logit)
- if not best_non_null_entry:
- if entry.text:
- best_non_null_entry = entry
-
- probs = _compute_softmax(total_scores)
-
- nbest_json = []
- for (i, entry) in enumerate(nbest):
- output = collections.OrderedDict()
- output["text"] = entry.text
- output["probability"] = probs[i]
- output["start_logit"] = entry.start_logit
- output["end_logit"] = entry.end_logit
- nbest_json.append(output)
-
- assert len(nbest_json) >= 1
-
- all_predictions[example.qas_id] = nbest_json[0]["text"]
-
- all_nbest_json[example.qas_id] = nbest_json
-
- with tf.gfile.GFile(output_prediction_file, "w") as writer:
- writer.write(json.dumps(all_predictions, indent=4) + "\n")
-
-
-def get_final_text(pred_text, orig_text, do_lower_case):
- """Project the tokenized prediction back to the original text."""
-
- # When we created the data, we kept track of the alignment between original
- # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
- # now `orig_text` contains the span of our original text corresponding to the
- # span that we predicted.
- #
- # However, `orig_text` may contain extra characters that we don't want in
- # our prediction.
- #
- # For example, let's say:
- # pred_text = steve smith
- # orig_text = Steve Smith's
- #
- # We don't want to return `orig_text` because it contains the extra "'s".
- #
- # We don't want to return `pred_text` because it's already been normalized
- # (the SQuAD eval script also does punctuation stripping/lower casing but
- # our tokenizer does additional normalization like stripping accent
- # characters).
- #
- # What we really want to return is "Steve Smith".
- #
- # Therefore, we have to apply a semi-complicated alignment heruistic between
- # `pred_text` and `orig_text` to get a character-to-charcter alignment. This
- # can fail in certain cases in which case we just return `orig_text`.
-
- def _strip_spaces(text):
- ns_chars = []
- ns_to_s_map = collections.OrderedDict()
- for (i, c) in enumerate(text):
- if c == " ":
- continue
- ns_to_s_map[len(ns_chars)] = i
- ns_chars.append(c)
- ns_text = "".join(ns_chars)
- return (ns_text, ns_to_s_map)
-
- # We first tokenize `orig_text`, strip whitespace from the result
- # and `pred_text`, and check if they are the same length. If they are
- # NOT the same length, the heuristic has failed. If they are the same
- # length, we assume the characters are one-to-one aligned.
- tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)
-
- tok_text = " ".join(tokenizer.tokenize(orig_text))
-
- start_position = tok_text.find(pred_text)
- if start_position == -1:
- if FLAGS_verbose_logging:
- tf.logging.info(
- "Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
- return orig_text
- end_position = start_position + len(pred_text) - 1
-
- (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
- (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
-
- if len(orig_ns_text) != len(tok_ns_text):
- if FLAGS_verbose_logging:
- tf.logging.info("Length not equal after stripping spaces: '%s' vs '%s'",
- orig_ns_text, tok_ns_text)
- return orig_text
-
- # We then project the characters in `pred_text` back to `orig_text` using
- # the character-to-character alignment.
- tok_s_to_ns_map = {}
- for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
- tok_s_to_ns_map[tok_index] = i
-
- orig_start_position = None
- if start_position in tok_s_to_ns_map:
- ns_start_position = tok_s_to_ns_map[start_position]
- if ns_start_position in orig_ns_to_s_map:
- orig_start_position = orig_ns_to_s_map[ns_start_position]
-
- if orig_start_position is None:
- if FLAGS_verbose_logging:
- tf.logging.info("Couldn't map start position")
- return orig_text
-
- orig_end_position = None
- if end_position in tok_s_to_ns_map:
- ns_end_position = tok_s_to_ns_map[end_position]
- if ns_end_position in orig_ns_to_s_map:
- orig_end_position = orig_ns_to_s_map[ns_end_position]
-
- if orig_end_position is None:
- if FLAGS_verbose_logging:
- tf.logging.info("Couldn't map end position")
- return orig_text
-
- output_text = orig_text[orig_start_position:(orig_end_position + 1)]
- return output_text
-
-
-def _get_best_indexes(logits, n_best_size):
- """Get the n-best logits from a list."""
- index_and_score = sorted(
- enumerate(logits), key=lambda x: x[1], reverse=True)
-
- best_indexes = []
- for i in range(len(index_and_score)):
- if i >= n_best_size:
- break
- best_indexes.append(index_and_score[i][0])
- return best_indexes
-
-
-def _compute_softmax(scores):
- """Compute softmax probability over raw logits."""
- if not scores:
- return []
-
- max_score = None
- for score in scores:
- if max_score is None or score > max_score:
- max_score = score
-
- exp_scores = []
- total_sum = 0.0
- for score in scores:
- x = math.exp(score - max_score)
- exp_scores.append(x)
- total_sum += x
-
- probs = []
- for score in exp_scores:
- probs.append(score / total_sum)
- return probs
-
-
-class FeatureWriter(object):
- """Writes InputFeature to TF example file."""
-
- def __init__(self, filename, is_training):
- self.filename = filename
- self.is_training = is_training
- self.num_features = 0
- self._writer = tf.python_io.TFRecordWriter(filename)
-
- def process_feature(self, feature):
- """Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
- self.num_features += 1
-
- def create_int_feature(values):
- feature = tf.train.Feature(
- int64_list=tf.train.Int64List(value=list(values)))
- return feature
-
- features = collections.OrderedDict()
- features["unique_ids"] = create_int_feature([feature.unique_id])
- features["input_ids"] = create_int_feature(feature.input_ids)
- features["input_mask"] = create_int_feature(feature.input_mask)
- features["segment_ids"] = create_int_feature(feature.segment_ids)
-
- if self.is_training:
- features["start_positions"] = create_int_feature(
- [feature.start_position])
- features["end_positions"] = create_int_feature(
- [feature.end_position])
- impossible = 0
- if feature.is_impossible:
- impossible = 1
- features["is_impossible"] = create_int_feature([impossible])
-
- tf_example = tf.train.Example(
- features=tf.train.Features(feature=features))
- self._writer.write(tf_example.SerializeToString())
-
- def close(self):
- self._writer.close()
-
-
-def validate_flags_or_throw(bert_config):
- """Validate the input FLAGS or throw an exception."""
- tokenization.validate_case_matches_checkpoint(FLAGS_do_lower_case,
- FLAGS_init_checkpoint_squad)
-
- # if not FLAGS_do_train and not FLAGS_do_predict:
- # raise ValueError(
- # "At least one of `do_train` or `do_predict` must be True.")
-
- # if FLAGS_do_train:
- # if not FLAGS_train_file:
- # raise ValueError(
- # "If `do_train` is True, then `train_file` must be specified.")
- # if FLAGS_do_predict:
- # if not FLAGS_predict_file:
- # raise ValueError(
- # "If `do_predict` is True, then `predict_file` must be specified.")
-
- # if FLAGS_max_seq_length > bert_config.max_position_embeddings:
- # raise ValueError(
- # "Cannot use sequence length %d because the BERT model "
- # "was only trained up to sequence length %d" %
- # (FLAGS_max_seq_length, bert_config.max_position_embeddings))
-
- # if FLAGS_max_seq_length <= FLAGS_max_query_length + 3:
- # raise ValueError(
- # "The max_seq_length (%d) must be greater than max_query_length "
- # "(%d) + 3" % (FLAGS_max_seq_length, FLAGS_max_query_length))