aboutsummaryrefslogtreecommitdiffstats
path: root/jython-tosca-parser/src/main/resources/Lib/site-packages/pkg_resources/_vendor/packaging/specifiers.py
diff options
context:
space:
mode:
Diffstat (limited to 'jython-tosca-parser/src/main/resources/Lib/site-packages/pkg_resources/_vendor/packaging/specifiers.py')
-rw-r--r--jython-tosca-parser/src/main/resources/Lib/site-packages/pkg_resources/_vendor/packaging/specifiers.py772
1 files changed, 772 insertions, 0 deletions
diff --git a/jython-tosca-parser/src/main/resources/Lib/site-packages/pkg_resources/_vendor/packaging/specifiers.py b/jython-tosca-parser/src/main/resources/Lib/site-packages/pkg_resources/_vendor/packaging/specifiers.py
new file mode 100644
index 0000000..9ad0a63
--- /dev/null
+++ b/jython-tosca-parser/src/main/resources/Lib/site-packages/pkg_resources/_vendor/packaging/specifiers.py
@@ -0,0 +1,772 @@
+# Copyright 2014 Donald Stufft
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from __future__ import absolute_import, division, print_function
+
+import abc
+import functools
+import itertools
+import re
+
+from ._compat import string_types, with_metaclass
+from .version import Version, LegacyVersion, parse
+
+
+class InvalidSpecifier(ValueError):
+ """
+ An invalid specifier was found, users should refer to PEP 440.
+ """
+
+
+class BaseSpecifier(with_metaclass(abc.ABCMeta, object)):
+
+ @abc.abstractmethod
+ def __str__(self):
+ """
+ Returns the str representation of this Specifier like object. This
+ should be representative of the Specifier itself.
+ """
+
+ @abc.abstractmethod
+ def __hash__(self):
+ """
+ Returns a hash value for this Specifier like object.
+ """
+
+ @abc.abstractmethod
+ def __eq__(self, other):
+ """
+ Returns a boolean representing whether or not the two Specifier like
+ objects are equal.
+ """
+
+ @abc.abstractmethod
+ def __ne__(self, other):
+ """
+ Returns a boolean representing whether or not the two Specifier like
+ objects are not equal.
+ """
+
+ @abc.abstractproperty
+ def prereleases(self):
+ """
+ Returns whether or not pre-releases as a whole are allowed by this
+ specifier.
+ """
+
+ @prereleases.setter
+ def prereleases(self, value):
+ """
+ Sets whether or not pre-releases as a whole are allowed by this
+ specifier.
+ """
+
+ @abc.abstractmethod
+ def contains(self, item, prereleases=None):
+ """
+ Determines if the given item is contained within this specifier.
+ """
+
+ @abc.abstractmethod
+ def filter(self, iterable, prereleases=None):
+ """
+ Takes an iterable of items and filters them so that only items which
+ are contained within this specifier are allowed in it.
+ """
+
+
+class _IndividualSpecifier(BaseSpecifier):
+
+ _operators = {}
+
+ def __init__(self, spec="", prereleases=None):
+ match = self._regex.search(spec)
+ if not match:
+ raise InvalidSpecifier("Invalid specifier: '{0}'".format(spec))
+
+ self._spec = (
+ match.group("operator").strip(),
+ match.group("version").strip(),
+ )
+
+ # Store whether or not this Specifier should accept prereleases
+ self._prereleases = prereleases
+
+ def __repr__(self):
+ pre = (
+ ", prereleases={0!r}".format(self.prereleases)
+ if self._prereleases is not None
+ else ""
+ )
+
+ return "<{0}({1!r}{2})>".format(
+ self.__class__.__name__,
+ str(self),
+ pre,
+ )
+
+ def __str__(self):
+ return "{0}{1}".format(*self._spec)
+
+ def __hash__(self):
+ return hash(self._spec)
+
+ def __eq__(self, other):
+ if isinstance(other, string_types):
+ try:
+ other = self.__class__(other)
+ except InvalidSpecifier:
+ return NotImplemented
+ elif not isinstance(other, self.__class__):
+ return NotImplemented
+
+ return self._spec == other._spec
+
+ def __ne__(self, other):
+ if isinstance(other, string_types):
+ try:
+ other = self.__class__(other)
+ except InvalidSpecifier:
+ return NotImplemented
+ elif not isinstance(other, self.__class__):
+ return NotImplemented
+
+ return self._spec != other._spec
+
+ def _get_operator(self, op):
+ return getattr(self, "_compare_{0}".format(self._operators[op]))
+
+ def _coerce_version(self, version):
+ if not isinstance(version, (LegacyVersion, Version)):
+ version = parse(version)
+ return version
+
+ @property
+ def prereleases(self):
+ return self._prereleases
+
+ @prereleases.setter
+ def prereleases(self, value):
+ self._prereleases = value
+
+ def contains(self, item, prereleases=None):
+ # Determine if prereleases are to be allowed or not.
+ if prereleases is None:
+ prereleases = self.prereleases
+
+ # Normalize item to a Version or LegacyVersion, this allows us to have
+ # a shortcut for ``"2.0" in Specifier(">=2")
+ item = self._coerce_version(item)
+
+ # Determine if we should be supporting prereleases in this specifier
+ # or not, if we do not support prereleases than we can short circuit
+ # logic if this version is a prereleases.
+ if item.is_prerelease and not prereleases:
+ return False
+
+ # Actually do the comparison to determine if this item is contained
+ # within this Specifier or not.
+ return self._get_operator(self._spec[0])(item, self._spec[1])
+
+ def filter(self, iterable, prereleases=None):
+ yielded = False
+ found_prereleases = []
+
+ kw = {"prereleases": prereleases if prereleases is not None else True}
+
+ # Attempt to iterate over all the values in the iterable and if any of
+ # them match, yield them.
+ for version in iterable:
+ parsed_version = self._coerce_version(version)
+
+ if self.contains(parsed_version, **kw):
+ # If our version is a prerelease, and we were not set to allow
+ # prereleases, then we'll store it for later incase nothing
+ # else matches this specifier.
+ if (parsed_version.is_prerelease
+ and not (prereleases or self.prereleases)):
+ found_prereleases.append(version)
+ # Either this is not a prerelease, or we should have been
+ # accepting prereleases from the begining.
+ else:
+ yielded = True
+ yield version
+
+ # Now that we've iterated over everything, determine if we've yielded
+ # any values, and if we have not and we have any prereleases stored up
+ # then we will go ahead and yield the prereleases.
+ if not yielded and found_prereleases:
+ for version in found_prereleases:
+ yield version
+
+
+class LegacySpecifier(_IndividualSpecifier):
+
+ _regex = re.compile(
+ r"""
+ ^
+ \s*
+ (?P<operator>(==|!=|<=|>=|<|>))
+ \s*
+ (?P<version>
+ [^\s]* # We just match everything, except for whitespace since this
+ # is a "legacy" specifier and the version string can be just
+ # about anything.
+ )
+ \s*
+ $
+ """,
+ re.VERBOSE | re.IGNORECASE,
+ )
+
+ _operators = {
+ "==": "equal",
+ "!=": "not_equal",
+ "<=": "less_than_equal",
+ ">=": "greater_than_equal",
+ "<": "less_than",
+ ">": "greater_than",
+ }
+
+ def _coerce_version(self, version):
+ if not isinstance(version, LegacyVersion):
+ version = LegacyVersion(str(version))
+ return version
+
+ def _compare_equal(self, prospective, spec):
+ return prospective == self._coerce_version(spec)
+
+ def _compare_not_equal(self, prospective, spec):
+ return prospective != self._coerce_version(spec)
+
+ def _compare_less_than_equal(self, prospective, spec):
+ return prospective <= self._coerce_version(spec)
+
+ def _compare_greater_than_equal(self, prospective, spec):
+ return prospective >= self._coerce_version(spec)
+
+ def _compare_less_than(self, prospective, spec):
+ return prospective < self._coerce_version(spec)
+
+ def _compare_greater_than(self, prospective, spec):
+ return prospective > self._coerce_version(spec)
+
+
+def _require_version_compare(fn):
+ @functools.wraps(fn)
+ def wrapped(self, prospective, spec):
+ if not isinstance(prospective, Version):
+ return False
+ return fn(self, prospective, spec)
+ return wrapped
+
+
+class Specifier(_IndividualSpecifier):
+
+ _regex = re.compile(
+ r"""
+ ^
+ \s*
+ (?P<operator>(~=|==|!=|<=|>=|<|>|===))
+ (?P<version>
+ (?:
+ # The identity operators allow for an escape hatch that will
+ # do an exact string match of the version you wish to install.
+ # This will not be parsed by PEP 440 and we cannot determine
+ # any semantic meaning from it. This operator is discouraged
+ # but included entirely as an escape hatch.
+ (?<====) # Only match for the identity operator
+ \s*
+ [^\s]* # We just match everything, except for whitespace
+ # since we are only testing for strict identity.
+ )
+ |
+ (?:
+ # The (non)equality operators allow for wild card and local
+ # versions to be specified so we have to define these two
+ # operators separately to enable that.
+ (?<===|!=) # Only match for equals and not equals
+
+ \s*
+ v?
+ (?:[0-9]+!)? # epoch
+ [0-9]+(?:\.[0-9]+)* # release
+ (?: # pre release
+ [-_\.]?
+ (a|b|c|rc|alpha|beta|pre|preview)
+ [-_\.]?
+ [0-9]*
+ )?
+ (?: # post release
+ (?:-[0-9]+)|(?:[-_\.]?(post|rev|r)[-_\.]?[0-9]*)
+ )?
+
+ # You cannot use a wild card and a dev or local version
+ # together so group them with a | and make them optional.
+ (?:
+ (?:[-_\.]?dev[-_\.]?[0-9]*)? # dev release
+ (?:\+[a-z0-9]+(?:[-_\.][a-z0-9]+)*)? # local
+ |
+ \.\* # Wild card syntax of .*
+ )?
+ )
+ |
+ (?:
+ # The compatible operator requires at least two digits in the
+ # release segment.
+ (?<=~=) # Only match for the compatible operator
+
+ \s*
+ v?
+ (?:[0-9]+!)? # epoch
+ [0-9]+(?:\.[0-9]+)+ # release (We have a + instead of a *)
+ (?: # pre release
+ [-_\.]?
+ (a|b|c|rc|alpha|beta|pre|preview)
+ [-_\.]?
+ [0-9]*
+ )?
+ (?: # post release
+ (?:-[0-9]+)|(?:[-_\.]?(post|rev|r)[-_\.]?[0-9]*)
+ )?
+ (?:[-_\.]?dev[-_\.]?[0-9]*)? # dev release
+ )
+ |
+ (?:
+ # All other operators only allow a sub set of what the
+ # (non)equality operators do. Specifically they do not allow
+ # local versions to be specified nor do they allow the prefix
+ # matching wild cards.
+ (?<!==|!=|~=) # We have special cases for these
+ # operators so we want to make sure they
+ # don't match here.
+
+ \s*
+ v?
+ (?:[0-9]+!)? # epoch
+ [0-9]+(?:\.[0-9]+)* # release
+ (?: # pre release
+ [-_\.]?
+ (a|b|c|rc|alpha|beta|pre|preview)
+ [-_\.]?
+ [0-9]*
+ )?
+ (?: # post release
+ (?:-[0-9]+)|(?:[-_\.]?(post|rev|r)[-_\.]?[0-9]*)
+ )?
+ (?:[-_\.]?dev[-_\.]?[0-9]*)? # dev release
+ )
+ )
+ \s*
+ $
+ """,
+ re.VERBOSE | re.IGNORECASE,
+ )
+
+ _operators = {
+ "~=": "compatible",
+ "==": "equal",
+ "!=": "not_equal",
+ "<=": "less_than_equal",
+ ">=": "greater_than_equal",
+ "<": "less_than",
+ ">": "greater_than",
+ "===": "arbitrary",
+ }
+
+ @_require_version_compare
+ def _compare_compatible(self, prospective, spec):
+ # Compatible releases have an equivalent combination of >= and ==. That
+ # is that ~=2.2 is equivalent to >=2.2,==2.*. This allows us to
+ # implement this in terms of the other specifiers instead of
+ # implementing it ourselves. The only thing we need to do is construct
+ # the other specifiers.
+
+ # We want everything but the last item in the version, but we want to
+ # ignore post and dev releases and we want to treat the pre-release as
+ # it's own separate segment.
+ prefix = ".".join(
+ list(
+ itertools.takewhile(
+ lambda x: (not x.startswith("post")
+ and not x.startswith("dev")),
+ _version_split(spec),
+ )
+ )[:-1]
+ )
+
+ # Add the prefix notation to the end of our string
+ prefix += ".*"
+
+ return (self._get_operator(">=")(prospective, spec)
+ and self._get_operator("==")(prospective, prefix))
+
+ @_require_version_compare
+ def _compare_equal(self, prospective, spec):
+ # We need special logic to handle prefix matching
+ if spec.endswith(".*"):
+ # Split the spec out by dots, and pretend that there is an implicit
+ # dot in between a release segment and a pre-release segment.
+ spec = _version_split(spec[:-2]) # Remove the trailing .*
+
+ # Split the prospective version out by dots, and pretend that there
+ # is an implicit dot in between a release segment and a pre-release
+ # segment.
+ prospective = _version_split(str(prospective))
+
+ # Shorten the prospective version to be the same length as the spec
+ # so that we can determine if the specifier is a prefix of the
+ # prospective version or not.
+ prospective = prospective[:len(spec)]
+
+ # Pad out our two sides with zeros so that they both equal the same
+ # length.
+ spec, prospective = _pad_version(spec, prospective)
+ else:
+ # Convert our spec string into a Version
+ spec = Version(spec)
+
+ # If the specifier does not have a local segment, then we want to
+ # act as if the prospective version also does not have a local
+ # segment.
+ if not spec.local:
+ prospective = Version(prospective.public)
+
+ return prospective == spec
+
+ @_require_version_compare
+ def _compare_not_equal(self, prospective, spec):
+ return not self._compare_equal(prospective, spec)
+
+ @_require_version_compare
+ def _compare_less_than_equal(self, prospective, spec):
+ return prospective <= Version(spec)
+
+ @_require_version_compare
+ def _compare_greater_than_equal(self, prospective, spec):
+ return prospective >= Version(spec)
+
+ @_require_version_compare
+ def _compare_less_than(self, prospective, spec):
+ # Convert our spec to a Version instance, since we'll want to work with
+ # it as a version.
+ spec = Version(spec)
+
+ # Check to see if the prospective version is less than the spec
+ # version. If it's not we can short circuit and just return False now
+ # instead of doing extra unneeded work.
+ if not prospective < spec:
+ return False
+
+ # This special case is here so that, unless the specifier itself
+ # includes is a pre-release version, that we do not accept pre-release
+ # versions for the version mentioned in the specifier (e.g. <3.1 should
+ # not match 3.1.dev0, but should match 3.0.dev0).
+ if not spec.is_prerelease and prospective.is_prerelease:
+ if Version(prospective.base_version) == Version(spec.base_version):
+ return False
+
+ # If we've gotten to here, it means that prospective version is both
+ # less than the spec version *and* it's not a pre-release of the same
+ # version in the spec.
+ return True
+
+ @_require_version_compare
+ def _compare_greater_than(self, prospective, spec):
+ # Convert our spec to a Version instance, since we'll want to work with
+ # it as a version.
+ spec = Version(spec)
+
+ # Check to see if the prospective version is greater than the spec
+ # version. If it's not we can short circuit and just return False now
+ # instead of doing extra unneeded work.
+ if not prospective > spec:
+ return False
+
+ # This special case is here so that, unless the specifier itself
+ # includes is a post-release version, that we do not accept
+ # post-release versions for the version mentioned in the specifier
+ # (e.g. >3.1 should not match 3.0.post0, but should match 3.2.post0).
+ if not spec.is_postrelease and prospective.is_postrelease:
+ if Version(prospective.base_version) == Version(spec.base_version):
+ return False
+
+ # Ensure that we do not allow a local version of the version mentioned
+ # in the specifier, which is techincally greater than, to match.
+ if prospective.local is not None:
+ if Version(prospective.base_version) == Version(spec.base_version):
+ return False
+
+ # If we've gotten to here, it means that prospective version is both
+ # greater than the spec version *and* it's not a pre-release of the
+ # same version in the spec.
+ return True
+
+ def _compare_arbitrary(self, prospective, spec):
+ return str(prospective).lower() == str(spec).lower()
+
+ @property
+ def prereleases(self):
+ # If there is an explicit prereleases set for this, then we'll just
+ # blindly use that.
+ if self._prereleases is not None:
+ return self._prereleases
+
+ # Look at all of our specifiers and determine if they are inclusive
+ # operators, and if they are if they are including an explicit
+ # prerelease.
+ operator, version = self._spec
+ if operator in ["==", ">=", "<=", "~="]:
+ # The == specifier can include a trailing .*, if it does we
+ # want to remove before parsing.
+ if operator == "==" and version.endswith(".*"):
+ version = version[:-2]
+
+ # Parse the version, and if it is a pre-release than this
+ # specifier allows pre-releases.
+ if parse(version).is_prerelease:
+ return True
+
+ return False
+
+ @prereleases.setter
+ def prereleases(self, value):
+ self._prereleases = value
+
+
+_prefix_regex = re.compile(r"^([0-9]+)((?:a|b|c|rc)[0-9]+)$")
+
+
+def _version_split(version):
+ result = []
+ for item in version.split("."):
+ match = _prefix_regex.search(item)
+ if match:
+ result.extend(match.groups())
+ else:
+ result.append(item)
+ return result
+
+
+def _pad_version(left, right):
+ left_split, right_split = [], []
+
+ # Get the release segment of our versions
+ left_split.append(list(itertools.takewhile(lambda x: x.isdigit(), left)))
+ right_split.append(list(itertools.takewhile(lambda x: x.isdigit(), right)))
+
+ # Get the rest of our versions
+ left_split.append(left[len(left_split):])
+ right_split.append(left[len(right_split):])
+
+ # Insert our padding
+ left_split.insert(
+ 1,
+ ["0"] * max(0, len(right_split[0]) - len(left_split[0])),
+ )
+ right_split.insert(
+ 1,
+ ["0"] * max(0, len(left_split[0]) - len(right_split[0])),
+ )
+
+ return (
+ list(itertools.chain(*left_split)),
+ list(itertools.chain(*right_split)),
+ )
+
+
+class SpecifierSet(BaseSpecifier):
+
+ def __init__(self, specifiers="", prereleases=None):
+ # Split on , to break each indidivual specifier into it's own item, and
+ # strip each item to remove leading/trailing whitespace.
+ specifiers = [s.strip() for s in specifiers.split(",") if s.strip()]
+
+ # Parsed each individual specifier, attempting first to make it a
+ # Specifier and falling back to a LegacySpecifier.
+ parsed = set()
+ for specifier in specifiers:
+ try:
+ parsed.add(Specifier(specifier))
+ except InvalidSpecifier:
+ parsed.add(LegacySpecifier(specifier))
+
+ # Turn our parsed specifiers into a frozen set and save them for later.
+ self._specs = frozenset(parsed)
+
+ # Store our prereleases value so we can use it later to determine if
+ # we accept prereleases or not.
+ self._prereleases = prereleases
+
+ def __repr__(self):
+ pre = (
+ ", prereleases={0!r}".format(self.prereleases)
+ if self._prereleases is not None
+ else ""
+ )
+
+ return "<SpecifierSet({0!r}{1})>".format(str(self), pre)
+
+ def __str__(self):
+ return ",".join(sorted(str(s) for s in self._specs))
+
+ def __hash__(self):
+ return hash(self._specs)
+
+ def __and__(self, other):
+ if isinstance(other, string_types):
+ other = SpecifierSet(other)
+ elif not isinstance(other, SpecifierSet):
+ return NotImplemented
+
+ specifier = SpecifierSet()
+ specifier._specs = frozenset(self._specs | other._specs)
+
+ if self._prereleases is None and other._prereleases is not None:
+ specifier._prereleases = other._prereleases
+ elif self._prereleases is not None and other._prereleases is None:
+ specifier._prereleases = self._prereleases
+ elif self._prereleases == other._prereleases:
+ specifier._prereleases = self._prereleases
+ else:
+ raise ValueError(
+ "Cannot combine SpecifierSets with True and False prerelease "
+ "overrides."
+ )
+
+ return specifier
+
+ def __eq__(self, other):
+ if isinstance(other, string_types):
+ other = SpecifierSet(other)
+ elif isinstance(other, _IndividualSpecifier):
+ other = SpecifierSet(str(other))
+ elif not isinstance(other, SpecifierSet):
+ return NotImplemented
+
+ return self._specs == other._specs
+
+ def __ne__(self, other):
+ if isinstance(other, string_types):
+ other = SpecifierSet(other)
+ elif isinstance(other, _IndividualSpecifier):
+ other = SpecifierSet(str(other))
+ elif not isinstance(other, SpecifierSet):
+ return NotImplemented
+
+ return self._specs != other._specs
+
+ @property
+ def prereleases(self):
+ # If we have been given an explicit prerelease modifier, then we'll
+ # pass that through here.
+ if self._prereleases is not None:
+ return self._prereleases
+
+ # Otherwise we'll see if any of the given specifiers accept
+ # prereleases, if any of them do we'll return True, otherwise False.
+ # Note: The use of any() here means that an empty set of specifiers
+ # will always return False, this is an explicit design decision.
+ return any(s.prereleases for s in self._specs)
+
+ @prereleases.setter
+ def prereleases(self, value):
+ self._prereleases = value
+
+ def contains(self, item, prereleases=None):
+ # Ensure that our item is a Version or LegacyVersion instance.
+ if not isinstance(item, (LegacyVersion, Version)):
+ item = parse(item)
+
+ # We can determine if we're going to allow pre-releases by looking to
+ # see if any of the underlying items supports them. If none of them do
+ # and this item is a pre-release then we do not allow it and we can
+ # short circuit that here.
+ # Note: This means that 1.0.dev1 would not be contained in something
+ # like >=1.0.devabc however it would be in >=1.0.debabc,>0.0.dev0
+ if (not (self.prereleases or prereleases)) and item.is_prerelease:
+ return False
+
+ # Determine if we're forcing a prerelease or not, we bypass
+ # self.prereleases here and use self._prereleases because we want to
+ # only take into consideration actual *forced* values. The underlying
+ # specifiers will handle the other logic.
+ # The logic here is: If prereleases is anything but None, we'll just
+ # go aheand and continue to use that. However if
+ # prereleases is None, then we'll use whatever the
+ # value of self._prereleases is as long as it is not
+ # None itself.
+ if prereleases is None and self._prereleases is not None:
+ prereleases = self._prereleases
+
+ # We simply dispatch to the underlying specs here to make sure that the
+ # given version is contained within all of them.
+ # Note: This use of all() here means that an empty set of specifiers
+ # will always return True, this is an explicit design decision.
+ return all(
+ s.contains(item, prereleases=prereleases)
+ for s in self._specs
+ )
+
+ def filter(self, iterable, prereleases=None):
+ # Determine if we're forcing a prerelease or not, we bypass
+ # self.prereleases here and use self._prereleases because we want to
+ # only take into consideration actual *forced* values. The underlying
+ # specifiers will handle the other logic.
+ # The logic here is: If prereleases is anything but None, we'll just
+ # go aheand and continue to use that. However if
+ # prereleases is None, then we'll use whatever the
+ # value of self._prereleases is as long as it is not
+ # None itself.
+ if prereleases is None and self._prereleases is not None:
+ prereleases = self._prereleases
+
+ # If we have any specifiers, then we want to wrap our iterable in the
+ # filter method for each one, this will act as a logical AND amongst
+ # each specifier.
+ if self._specs:
+ for spec in self._specs:
+ iterable = spec.filter(iterable, prereleases=prereleases)
+ return iterable
+ # If we do not have any specifiers, then we need to have a rough filter
+ # which will filter out any pre-releases, unless there are no final
+ # releases, and which will filter out LegacyVersion in general.
+ else:
+ filtered = []
+ found_prereleases = []
+
+ for item in iterable:
+ # Ensure that we some kind of Version class for this item.
+ if not isinstance(item, (LegacyVersion, Version)):
+ parsed_version = parse(item)
+ else:
+ parsed_version = item
+
+ # Filter out any item which is parsed as a LegacyVersion
+ if isinstance(parsed_version, LegacyVersion):
+ continue
+
+ # Store any item which is a pre-release for later unless we've
+ # already found a final version or we are accepting prereleases
+ if parsed_version.is_prerelease and not prereleases:
+ if not filtered:
+ found_prereleases.append(item)
+ else:
+ filtered.append(item)
+
+ # If we've found no items except for pre-releases, then we'll go
+ # ahead and use the pre-releases
+ if not filtered and found_prereleases and prereleases is None:
+ return found_prereleases
+
+ return filtered