summaryrefslogtreecommitdiffstats
AgeCommit message (Expand)AuthorFilesLines
2020-10-29[DOC] Fix for SDC git repo path not found issueramagp1-1/+1
2020-10-27Update INFO.yamlChrisC1-0/+16
2020-10-27Officially Release 1.7.2sebdet1-0/+22
2020-10-26Fix broken local build1.7.2vasraz164-164/+164
2020-10-26software version fixtragait2-0/+4
2020-10-26To solve the problem that the CSAR file cannot be imported when it is importe...zhaoxiangjun6663-9/+21
2020-10-26Fix workflow issuexuegao1-4/+0
2020-10-23Fix substitution_mapping property mappingandre.schmid2-11/+17
2020-10-23Fix for substitution filter propertiesKrupaNagabhushan23-649/+588
2020-10-23Remove sdc-tosca-parser dependencyvasraz9-264/+39
2020-10-20Increase timeout for Selenium testssebdet2-2/+2
2020-10-20Upgrade to 1.7.2sebdet165-165/+165
2020-10-19Read files from resources to create HELM VFMMD IRSHAD SHEIKH7-4/+72
2020-10-12Add test code for Test Topology Auto Design- Service Importzhaoxiangjun6665-281/+1163
2020-10-11Add InvocationID to p_mdc field in audit logsnrpandya3-1/+11
2020-10-09VNFSDK moved to httpsJulienBe1-165/+51
2020-10-08Update READMEsebdet4-52/+103
2020-10-03sdc changes for identifying helm package as a vfmSithara Nambiar11-4/+95
2020-09-29Allow hot reloading of specific config propertiesaribeiro3-17/+24
2020-09-28Release 1.7.1sebdet1-0/+22
2020-09-25Standardize docker tagging1.7.1sebdet11-34/+31
2020-09-24Fix docker stage for be pluginssebdet1-0/+1
2020-09-23Remove legacy Policy Types no longer usedPamela Dragosh3-486/+0
2020-09-22SDC changes for adding dummy base heat-new patchSithara Nambiar6-1/+188
2020-09-21Support for Test Topology Auto Design- Service Importzhaoxiangjun66665-130/+14876
2020-09-18Introduce a new docker for be pluginssebdet61-1400/+4692
2020-09-17Remove jboss-rmisebdet2-68/+80
2020-09-16Remove jboss-rmisebdet11-0/+66
2020-09-15Remove jboss-rmisebdet1-0/+6
2020-09-14Fix VSP updating issuexuegao1-1/+3
2020-09-10Update sdc start to mount catalog-be pluginsandre.schmid2-5/+39
2020-09-10Add skip test profilesebdet1-0/+27
2020-09-09Create / Update Entitlement Pool - Support Type FieldJulienBe3-17/+4
2020-09-08Upgrade to java 11sebdet32-804/+1198
2020-09-07Fix Vulnerabilities reported by SONARvasraz36-1489/+979
2020-09-07Make directives options configurable backendaribeiro7-76/+79
2020-09-07Fix Sonar coveragesebdet1-1/+0
2020-09-07Make directives options configurablearibeiro12-31/+181
2020-09-07Add and change node_filter unit testesaribeiro2-5/+86
2020-09-07Enable selection of requirementsvasraz18-216/+387
2020-09-07Use meaningful workflow namexuegao5-4/+41
2020-09-07Upgrade Vulnerable Direct Dependencies [many]amohamad2-4/+10
2020-09-07Update version to 1.7.1sebdet164-166/+165
2020-09-07Optimize BuildJulienBe798-129767/+541
2020-09-07Replace artifact folder ONBOARDED_PACKAGE in CSARvasraz2-4/+8
2020-09-07Enhancement debian package manager apt-get tweaksPratik Raj2-2/+2
2020-09-07Change to public npm reposebdet1-1/+1
2020-09-07Add 'data_types' during import VFCsvasraz14-317/+486
2020-09-07Retrieve node_filter capabilitiesaribeiro10-129/+216
2020-09-07Template design (NSSTs) for slice sub-nets (RAN, Core, Transport).hekeguang3-0/+1254
92 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
.. This work is licensed under a Creative Commons Attribution 4.0 International License.
.. http://creativecommons.org/licenses/by/4.0
.. Copyright 2018 Amdocs, Bell Canada

.. Links
.. _Helm: https://docs.helm.sh/
.. _Helm Charts: https://github.com/kubernetes/charts
.. _Kubernetes: https://Kubernetes.io/
.. _Docker: https://www.docker.com/
.. _Nexus: https://nexus.onap.org/#welcome
.. _AWS Elastic Block Store: https://aws.amazon.com/ebs/
.. _Azure File: https://docs.microsoft.com/en-us/azure/storage/files/storage-files-introduction
.. _GCE Persistent Disk: https://cloud.google.com/compute/docs/disks/
.. _Gluster FS: https://www.gluster.org/
.. _Kubernetes Storage Class: https://Kubernetes.io/docs/concepts/storage/storage-classes/
.. _Assigning Pods to Nodes: https://Kubernetes.io/docs/concepts/configuration/assign-pod-node/


.. _developer-guide-label:

OOM Developer Guide
###################

.. figure:: oomLogoV2-medium.png
   :align: right

ONAP consists of a large number of components, each of which are substantial
projects within themselves, which results in a high degree of complexity in
deployment and management. To cope with this complexity the ONAP Operations
Manager (OOM) uses a Helm_ model of ONAP - Helm being the primary management
system for Kubernetes_ container systems - to drive all user driven life-cycle
management operations. The Helm model of ONAP is composed of a set of
hierarchical Helm charts that define the structure of the ONAP components and
the configuration of these components.  These charts are fully parameterized
such that a single environment file defines all of the parameters needed to
deploy ONAP.  A user of ONAP may maintain several such environment files to
control the deployment of ONAP in multiple environments such as development,
pre-production, and production.

The following sections describe how the ONAP Helm charts are constructed.

.. contents::
   :depth: 3
   :local:
..

Container Background
====================
Linux containers allow for an application and all of its operating system
dependencies to be packaged and deployed as a single unit without including a
guest operating system as done with virtual machines. The most popular
container solution is Docker_ which provides tools for container management
like the Docker Host (dockerd) which can create, run, stop, move, or delete a
container. Docker has a very popular registry of containers images that can be
used by any Docker system; however, in the ONAP context, Docker images are
built by the standard CI/CD flow and stored in Nexus_ repositories. OOM uses
the "standard" ONAP docker containers and three new ones specifically created
for OOM.

Containers are isolated from each other primarily via name spaces within the
Linux kernel without the need for multiple guest operating systems. As such,
multiple containers can be deployed with little overhead such as all of ONAP
can be deployed on a single host. With some optimization of the ONAP components
(e.g. elimination of redundant database instances) it may be possible to deploy
ONAP on a single laptop computer.

Helm Charts
===========
A Helm chart is a collection of files that describe a related set of Kubernetes
resources. A simple chart might be used to deploy something simple, like a
memcached pod, while a complex chart might contain many micro-service arranged
in a hierarchy as found in the `aai` ONAP component.

Charts are created as files laid out in a particular directory tree, then they
can be packaged into versioned archives to be deployed. There is a public
archive of `Helm Charts`_ on GitHub that includes many technologies applicable
to ONAP. Some of these charts have been used in ONAP and all of the ONAP charts
have been created following the guidelines provided.

The top level of the ONAP charts is shown below:

.. code-block:: bash

  common
  ├── cassandra
  │   ├── Chart.yaml
  │   ├── requirements.yaml
  │   ├── resources
  │   │   ├── config
  │   │   │   └── docker-entrypoint.sh
  │   │   ├── exec.py
  │   │   └── restore.sh
  │   ├── templates
  │   │   ├── backup
  │   │   │   ├── configmap.yaml
  │   │   │   ├── cronjob.yaml
  │   │   │   ├── pv.yaml
  │   │   │   └── pvc.yaml
  │   │   ├── configmap.yaml
  │   │   ├── pv.yaml
  │   │   ├── service.yaml
  │   │   └── statefulset.yaml
  │   └── values.yaml
  ├── common
  │   ├── Chart.yaml
  │   ├── templates
  │   │   ├── _createPassword.tpl
  │   │   ├── _ingress.tpl
  │   │   ├── _labels.tpl
  │   │   ├── _mariadb.tpl
  │   │   ├── _name.tpl
  │   │   ├── _namespace.tpl
  │   │   ├── _repository.tpl
  │   │   ├── _resources.tpl
  │   │   ├── _secret.yaml
  │   │   ├── _service.tpl
  │   │   ├── _storage.tpl
  │   │   └── _tplValue.tpl
  │   └── values.yaml
  ├── ...
  └── postgres-legacy
      ├── Chart.yaml
      ├── requirements.yaml
      ├── charts
      └── configs

The common section of charts consists of a set of templates that assist with
parameter substitution (`_name.tpl`, `_namespace.tpl` and others) and a set of charts
for components used throughout ONAP.  When the common components are used by other charts they
are instantiated each time or we can deploy a shared instances for several components.

All of the ONAP components have charts that follow the pattern shown below:

.. code-block:: bash

  name-of-my-component
  ├── Chart.yaml
  ├── requirements.yaml
  ├── component
  │   └── subcomponent-folder
  ├── charts
  │   └── subchart-folder
  ├── resources
  │   ├── folder1
  │   │   ├── file1
  │   │   └── file2
  │   └── folder1
  │       ├── file3
  │       └── folder3
  │           └── file4
  ├── templates
  │   ├── NOTES.txt
  │   ├── configmap.yaml
  │   ├── deployment.yaml
  │   ├── ingress.yaml
  │   ├── job.yaml
  │   ├── secrets.yaml
  │   └── service.yaml
  └── values.yaml

Note that the component charts / components may include a hierarchy of sub
components and in themselves can be quite complex.

You can use either `charts` or `components` folder for your subcomponents.
`charts` folder means that the subcomponent will always been deployed.

`components` folders means we can choose if we want to deploy the sub component.

This choice is done in root `values.yaml`:

.. code-block:: yaml

  ---
  global:
    key: value

  component1:
    enabled: true
  component2:
    enabled: true

Then in `requirements.yaml`, you'll use these values:

.. code-block:: yaml

  ---
  dependencies:
    - name: common
      version: ~x.y-0
      repository: '@local'
    - name: component1
      version: ~x.y-0
      repository: 'file://components/component1'
      condition: component1.enabled
    - name: component2
      version: ~x.y-0
      repository: 'file://components/component2'
      condition: component2.enabled

Configuration of the components varies somewhat from component to component but
generally follows the pattern of one or more `configmap.yaml` files which can
directly provide configuration to the containers in addition to processing
configuration files stored in the `config` directory.  It is the responsibility
of each ONAP component team to update these configuration files when changes
are made to the project containers that impact configuration.

The following section describes how the hierarchical ONAP configuration system
is key to management of such a large system.

Configuration Management
========================

ONAP is a large system composed of many components - each of which are complex
systems in themselves - that needs to be deployed in a number of different
ways.  For example, within a single operator's network there may be R&D
deployments under active development, pre-production versions undergoing system
testing and production systems that are operating live networks.  Each of these
deployments will differ in significant ways, such as the version of the
software images deployed.  In addition, there may be a number of application
specific configuration differences, such as operating system environment
variables.  The following describes how the Helm configuration management
system is used within the OOM project to manage both ONAP infrastructure
configuration as well as ONAP components configuration.

One of the artifacts that OOM/Kubernetes uses to deploy ONAP components is the
deployment specification, yet another yaml file.  Within these deployment specs
are a number of parameters as shown in the following example:

.. code-block:: yaml

  apiVersion: apps/v1
  kind: StatefulSet
  metadata:
    labels:
      app.kubernetes.io/name: zookeeper
      helm.sh/chart: zookeeper
      app.kubernetes.io/component: server
      app.kubernetes.io/managed-by: Tiller
      app.kubernetes.io/instance: onap-oof
    name: onap-oof-zookeeper
    namespace: onap
  spec:
    <...>
    replicas: 3
    selector:
      matchLabels:
        app.kubernetes.io/name: zookeeper
        app.kubernetes.io/component: server
        app.kubernetes.io/instance: onap-oof
    serviceName: onap-oof-zookeeper-headless
    template:
      metadata:
        labels:
          app.kubernetes.io/name: zookeeper
          helm.sh/chart: zookeeper
          app.kubernetes.io/component: server
          app.kubernetes.io/managed-by: Tiller
          app.kubernetes.io/instance: onap-oof
      spec:
        <...>
        affinity:
        containers:
        - name: zookeeper
          <...>
          image: gcr.io/google_samples/k8szk:v3
          imagePullPolicy: Always
          <...>
          ports:
          - containerPort: 2181
            name: client
            protocol: TCP
          - containerPort: 3888
            name: election
            protocol: TCP
          - containerPort: 2888
            name: server
            protocol: TCP
          <...>

Note that within the statefulset specification, one of the container arguments
is the key/value pair image: gcr.io/google_samples/k8szk:v3 which
specifies the version of the zookeeper software to deploy.  Although the
statefulset specifications greatly simplify statefulset, maintenance of the
statefulset specifications themselves become problematic as software versions
change over time or as different versions are required for different
statefulsets.  For example, if the R&D team needs to deploy a newer version of
mariadb than what is currently used in the production environment, they would
need to clone the statefulset specification and change this value.  Fortunately,
this problem has been solved with the templating capabilities of Helm.

The following example shows how the statefulset specifications are modified to
incorporate Helm templates such that key/value pairs can be defined outside of
the statefulset specifications and passed during instantiation of the component.

.. code-block:: yaml

  apiVersion: apps/v1
  kind: StatefulSet
  metadata:
    name: {{ include "common.fullname" . }}
    namespace: {{ include "common.namespace" . }}
    labels: {{- include "common.labels" . | nindent 4 }}
  spec:
    replicas: {{ .Values.replicaCount }}
    selector:
      matchLabels: {{- include "common.matchLabels" . | nindent 6 }}
    # serviceName is only needed for StatefulSet
    # put the postfix part only if you have add a postfix on the service name
    serviceName: {{ include "common.servicename" . }}-{{ .Values.service.postfix }}
    <...>
    template:
      metadata:
        labels: {{- include "common.labels" . | nindent 8 }}
        annotations: {{- include "common.tplValue" (dict "value" .Values.podAnnotations "context" $) | nindent 8 }}
        name: {{ include "common.name" . }}
      spec:
        <...>
        containers:
          - name: {{ include "common.name" . }}
            image: {{ .Values.image }}
            imagePullPolicy: {{ .Values.global.pullPolicy | default .Values.pullPolicy }}
            ports:
            {{- range $index, $port := .Values.service.ports }}
              - containerPort: {{ $port.port }}
                name: {{ $port.name }}
            {{- end }}
            {{- range $index, $port := .Values.service.headlessPorts }}
              - containerPort: {{ $port.port }}
                name: {{ $port.name }}
            {{- end }}
            <...>

This version of the statefulset specification has gone through the process of
templating values that are likely to change between statefulsets. Note that the
image is now specified as: image: {{ .Values.image }} instead of a
string used previously.  During the statefulset phase, Helm (actually the Helm
sub-component Tiller) substitutes the {{ .. }} entries with a variable defined
in a values.yaml file.  The content of this file is as follows:

.. code-block:: yaml

  <...>
  image: gcr.io/google_samples/k8szk:v3
  replicaCount: 3
  <...>


Within the values.yaml file there is an image key with the value
`gcr.io/google_samples/k8szk:v3` which is the same value used in
the non-templated version.  Once all of the substitutions are complete, the
resulting statefulset specification ready to be used by Kubernetes.

When creating a template consider the use of default values if appropriate.
Helm templating has built in support for DEFAULT values, here is
an example:

.. code-block:: yaml

  imagePullSecrets:
  - name: "{{ .Values.nsPrefix | default "onap" }}-docker-registry-key"

The pipeline operator ("|") used here hints at that power of Helm templates in
that much like an operating system command line the pipeline operator allow
over 60 Helm functions to be embedded directly into the template (note that the
Helm template language is a superset of the Go template language).  These
functions include simple string operations like upper and more complex flow
control operations like if/else.

OOM is mainly helm templating. In order to have consistent deployment of the
different components of ONAP, some rules must be followed.

Templates are provided in order to create Kubernetes resources (Secrets,
Ingress, Services, ...) or part of Kubernetes resources (names, labels,
resources requests and limits, ...).

a full list and simple description is done in
`kubernetes/common/common/documentation.rst`.

Service template
----------------

In order to create a Service for a component, you have to create a file (with
`service` in the name.
For normal service, just put the following line:

.. code-block:: yaml

  {{ include "common.service" . }}

For headless service, the line to put is the following:

.. code-block:: yaml

  {{ include "common.headlessService" . }}

The configuration of the service is done in component `values.yaml`:

.. code-block:: yaml

  service:
   name: NAME-OF-THE-SERVICE
   postfix: MY-POSTFIX
   type: NodePort
   annotations:
     someAnnotationsKey: value
   ports:
   - name: tcp-MyPort
     port: 5432
     nodePort: 88
   - name: http-api
     port: 8080
     nodePort: 89
   - name: https-api
     port: 9443
     nodePort: 90

`annotations` and `postfix` keys are optional.
if `service.type` is `NodePort`, then you have to give `nodePort` value for your
service ports (which is the end of the computed nodePort, see example).

It would render the following Service Resource (for a component named
`name-of-my-component`, with version `x.y.z`, helm deployment name
`my-deployment` and `global.nodePortPrefix` `302`):

.. code-block:: yaml

  apiVersion: v1
  kind: Service
  metadata:
    annotations:
      someAnnotationsKey: value
    name: NAME-OF-THE-SERVICE-MY-POSTFIX
    labels:
      app.kubernetes.io/name: name-of-my-component
      helm.sh/chart: name-of-my-component-x.y.z
      app.kubernetes.io/instance: my-deployment-name-of-my-component
      app.kubernetes.io/managed-by: Tiller
  spec:
    ports:
      - port: 5432
        targetPort: tcp-MyPort
        nodePort: 30288
      - port: 8080
        targetPort: http-api
        nodePort: 30289
      - port: 9443
        targetPort: https-api
        nodePort: 30290
    selector:
      app.kubernetes.io/name: name-of-my-component
      app.kubernetes.io/instance:  my-deployment-name-of-my-component
    type: NodePort

In the deployment or statefulSet file, you needs to set the good labels in order
for the service to match the pods.

here's an example to be sure it matchs (for a statefulSet):

.. code-block:: yaml

  apiVersion: apps/v1
  kind: StatefulSet
  metadata:
    name: {{ include "common.fullname" . }}
    namespace: {{ include "common.namespace" . }}
    labels: {{- include "common.labels" . | nindent 4 }}
  spec:
    selector:
      matchLabels: {{- include "common.matchLabels" . | nindent 6 }}
    # serviceName is only needed for StatefulSet
    # put the postfix part only if you have add a postfix on the service name
    serviceName: {{ include "common.servicename" . }}-{{ .Values.service.postfix }}
    <...>
    template:
      metadata:
        labels: {{- include "common.labels" . | nindent 8 }}
        annotations: {{- include "common.tplValue" (dict "value" .Values.podAnnotations "context" $) | nindent 8 }}
        name: {{ include "common.name" . }}
      spec:
       <...>
       containers:
         - name: {{ include "common.name" . }}
           ports:
           {{- range $index, $port := .Values.service.ports }}
           - containerPort: {{ $port.port }}
             name: {{ $port.name }}
           {{- end }}
           {{- range $index, $port := .Values.service.headlessPorts }}
           - containerPort: {{ $port.port }}
             name: {{ $port.name }}
           {{- end }}
           <...>

The configuration of the service is done in component `values.yaml`:

.. code-block:: yaml

  service:
   name: NAME-OF-THE-SERVICE
   headless:
     postfix: NONE
     annotations:
       anotherAnnotationsKey : value
     publishNotReadyAddresses: true
   headlessPorts:
   - name: tcp-MyPort
     port: 5432
   - name: http-api
     port: 8080
   - name: https-api
     port: 9443

`headless.annotations`, `headless.postfix` and
`headless.publishNotReadyAddresses` keys are optional.

If `headless.postfix` is not set, then we'll add `-headless` at the end of the
service name.

If it set to `NONE`, there will be not postfix.

And if set to something, it will add `-something` at the end of the service
name.

It would render the following Service Resource (for a component named
`name-of-my-component`, with version `x.y.z`, helm deployment name
`my-deployment` and `global.nodePortPrefix` `302`):

.. code-block:: yaml

  apiVersion: v1
  kind: Service
  metadata:
    annotations:
      anotherAnnotationsKey: value
    name: NAME-OF-THE-SERVICE
    labels:
      app.kubernetes.io/name: name-of-my-component
      helm.sh/chart: name-of-my-component-x.y.z
      app.kubernetes.io/instance: my-deployment-name-of-my-component
      app.kubernetes.io/managed-by: Tiller
  spec:
    clusterIP: None
    ports:
      - port: 5432
        targetPort: tcp-MyPort
        nodePort: 30288
      - port: 8080
        targetPort: http-api
        nodePort: 30289
      - port: 9443
        targetPort: https-api
        nodePort: 30290
    publishNotReadyAddresses: true
    selector:
      app.kubernetes.io/name: name-of-my-component
      app.kubernetes.io/instance:  my-deployment-name-of-my-component
    type: ClusterIP

Previous example of StatefulSet would also match (except for the `postfix` part
obviously).

Creating Deployment or StatefulSet
----------------------------------

Deployment and StatefulSet should use the `apps/v1` (which has appeared in
v1.9).
As seen on the service part, the following parts are mandatory:

.. code-block:: yaml

  apiVersion: apps/v1
  kind: StatefulSet
  metadata:
    name: {{ include "common.fullname" . }}
    namespace: {{ include "common.namespace" . }}
    labels: {{- include "common.labels" . | nindent 4 }}
  spec:
    selector:
      matchLabels: {{- include "common.matchLabels" . | nindent 6 }}
    # serviceName is only needed for StatefulSet
    # put the postfix part only if you have add a postfix on the service name
    serviceName: {{ include "common.servicename" . }}-{{ .Values.service.postfix }}
    <...>
    template:
      metadata:
        labels: {{- include "common.labels" . | nindent 8 }}
        annotations: {{- include "common.tplValue" (dict "value" .Values.podAnnotations "context" $) | nindent 8 }}
        name: {{ include "common.name" . }}
      spec:
        <...>
        containers:
          - name: {{ include "common.name" . }}

ONAP Application Configuration
------------------------------

Dependency Management
---------------------
These Helm charts describe the desired state
of an ONAP deployment and instruct the Kubernetes container manager as to how
to maintain the deployment in this state.  These dependencies dictate the order
in-which the containers are started for the first time such that such
dependencies are always met without arbitrary sleep times between container
startups.  For example, the SDC back-end container requires the Elastic-Search,
Cassandra and Kibana containers within SDC to be ready and is also dependent on
DMaaP (or the message-router) to be ready - where ready implies the built-in
"readiness" probes succeeded - before becoming fully operational.  When an
initial deployment of ONAP is requested the current state of the system is NULL
so ONAP is deployed by the Kubernetes manager as a set of Docker containers on
one or more predetermined hosts.  The hosts could be physical machines or
virtual machines.  When deploying on virtual machines the resulting system will
be very similar to "Heat" based deployments, i.e. Docker containers running
within a set of VMs, the primary difference being that the allocation of
containers to VMs is done dynamically with OOM and statically with "Heat".
Example SO deployment descriptor file shows SO's dependency on its mariadb
data-base component:

SO deployment specification excerpt:

.. code-block:: yaml

  apiVersion: apps/v1
  kind: Deployment
  metadata:
    name: {{ include "common.fullname" . }}
    namespace: {{ include "common.namespace" . }}
    labels: {{- include "common.labels" . | nindent 4 }}
  spec:
    replicas: {{ .Values.replicaCount }}
    selector:
      matchLabels: {{- include "common.matchLabels" . | nindent 6 }}
    template:
      metadata:
        labels:
          app: {{ include "common.name" . }}
          release: {{ .Release.Name }}
      spec:
        initContainers:
        - command:
          - /root/ready.py
          args:
          - --container-name
          - so-mariadb
          env:
  ...

Kubernetes Container Orchestration
==================================
The ONAP components are managed by the Kubernetes_ container management system
which maintains the desired state of the container system as described by one
or more deployment descriptors - similar in concept to OpenStack HEAT
Orchestration Templates. The following sections describe the fundamental
objects managed by Kubernetes, the network these components use to communicate
with each other and other entities outside of ONAP and the templates that
describe the configuration and desired state of the ONAP components.

Name Spaces
-----------
Within the namespaces are Kubernetes services that provide external
connectivity to pods that host Docker containers.

ONAP Components to Kubernetes Object Relationships
--------------------------------------------------
Kubernetes deployments consist of multiple objects:

- **nodes** - a worker machine - either physical or virtual - that hosts
  multiple containers managed by Kubernetes.
- **services** - an abstraction of a logical set of pods that provide a
  micro-service.
- **pods** - one or more (but typically one) container(s) that provide specific
  application functionality.
- **persistent volumes** - One or more permanent volumes need to be established
  to hold non-ephemeral configuration and state data.

The relationship between these objects is shown in the following figure:

.. .. uml::
..
..   @startuml
..   node PH {
..      component Service {
..         component Pod0
..         component Pod1
..      }
..   }
..
..   database PV
..   @enduml

.. figure:: kubernetes_objects.png

OOM uses these Kubernetes objects as described in the following sections.

Nodes
~~~~~
OOM works with both physical and virtual worker machines.

* Virtual Machine Deployments - If ONAP is to be deployed onto a set of virtual
  machines, the creation of the VMs is outside of the scope of OOM and could be
  done in many ways, such as

  * manually, for example by a user using the OpenStack Horizon dashboard or
    AWS EC2, or
  * automatically, for example with the use of a OpenStack Heat Orchestration
    Template which builds an ONAP stack, Azure ARM template, AWS CloudFormation
    Template, or
  * orchestrated, for example with Cloudify creating the VMs from a TOSCA
    template and controlling their life cycle for the life of the ONAP
    deployment.

* Physical Machine Deployments - If ONAP is to be deployed onto physical
  machines there are several options but the recommendation is to use Rancher
  along with Helm to associate hosts with a Kubernetes cluster.

Pods
~~~~
A group of containers with shared storage and networking can be grouped
together into a Kubernetes pod.  All of the containers within a pod are
co-located and co-scheduled so they operate as a single unit.  Within ONAP
Amsterdam release, pods are mapped one-to-one to docker containers although
this may change in the future.  As explained in the Services section below the
use of Pods within each ONAP component is abstracted from other ONAP
components.

Services
~~~~~~~~
OOM uses the Kubernetes service abstraction to provide a consistent access
point for each of the ONAP components independent of the pod or container
architecture of that component.  For example, the SDNC component may introduce
OpenDaylight clustering as some point and change the number of pods in this
component to three or more but this change will be isolated from the other ONAP
components by the service abstraction.  A service can include a load balancer
on its ingress to distribute traffic between the pods and even react to dynamic
changes in the number of pods if they are part of a replica set.

Persistent Volumes
~~~~~~~~~~~~~~~~~~
To enable ONAP to be deployed into a wide variety of cloud infrastructures a
flexible persistent storage architecture, built on Kubernetes persistent
volumes, provides the ability to define the physical storage in a central
location and have all ONAP components securely store their data.

When deploying ONAP into a public cloud, available storage services such as
`AWS Elastic Block Store`_, `Azure File`_, or `GCE Persistent Disk`_ are
options.  Alternatively, when deploying into a private cloud the storage
architecture might consist of Fiber Channel, `Gluster FS`_, or iSCSI. Many
other storage options existing, refer to the `Kubernetes Storage Class`_
documentation for a full list of the options. The storage architecture may vary
from deployment to deployment but in all cases a reliable, redundant storage
system must be provided to ONAP with which the state information of all ONAP
components will be securely stored. The Storage Class for a given deployment is
a single parameter listed in the ONAP values.yaml file and therefore is easily
customized. Operation of this storage system is outside the scope of the OOM.

.. code-block:: yaml

  Insert values.yaml code block with storage block here

Once the storage class is selected and the physical storage is provided, the
ONAP deployment step creates a pool of persistent volumes within the given
physical storage that is used by all of the ONAP components. ONAP components
simply make a claim on these persistent volumes (PV), with a persistent volume
claim (PVC), to gain access to their storage.

The following figure illustrates the relationships between the persistent
volume claims, the persistent volumes, the storage class, and the physical
storage.

.. graphviz::

   digraph PV {
      label = "Persistance Volume Claim to Physical Storage Mapping"
      {
         node [shape=cylinder]
         D0 [label="Drive0"]
         D1 [label="Drive1"]
         Dx [label="Drivex"]
      }
      {
         node [shape=Mrecord label="StorageClass:ceph"]
         sc
      }
      {
         node [shape=point]
         p0 p1 p2
         p3 p4 p5
      }
      subgraph clusterSDC {
         label="SDC"
         PVC0
         PVC1
      }
      subgraph clusterSDNC {
         label="SDNC"
         PVC2
      }
      subgraph clusterSO {
         label="SO"
         PVCn
      }
      PV0 -> sc
      PV1 -> sc
      PV2 -> sc
      PVn -> sc

      sc -> {D0 D1 Dx}
      PVC0 -> PV0
      PVC1 -> PV1
      PVC2 -> PV2
      PVCn -> PVn

      # force all of these nodes to the same line in the given order
      subgraph {
         rank = same; PV0;PV1;PV2;PVn;p0;p1;p2
         PV0->PV1->PV2->p0->p1->p2->PVn [style=invis]
      }

      subgraph {
         rank = same; D0;D1;Dx;p3;p4;p5
         D0->D1->p3->p4->p5->Dx [style=invis]
      }

   }

In-order for an ONAP component to use a persistent volume it must make a claim
against a specific persistent volume defined in the ONAP common charts.  Note
that there is a one-to-one relationship between a PVC and PV.  The following is
an excerpt from a component chart that defines a PVC:

.. code-block:: yaml

  Insert PVC example here

OOM Networking with Kubernetes
------------------------------

- DNS
- Ports - Flattening the containers also expose port conflicts between the
  containers which need to be resolved.

Node Ports
~~~~~~~~~~

Pod Placement Rules
-------------------
OOM will use the rich set of Kubernetes node and pod affinity /
anti-affinity rules to minimize the chance of a single failure resulting in a
loss of ONAP service. Node affinity / anti-affinity is used to guide the
Kubernetes orchestrator in the placement of pods on nodes (physical or virtual
machines).  For example:

- if a container used Intel DPDK technology the pod may state that it as
  affinity to an Intel processor based node, or
- geographical based node labels (such as the Kubernetes standard zone or
  region labels) may be used to ensure placement of a DCAE complex close to the
  VNFs generating high volumes of traffic thus minimizing networking cost.
  Specifically, if nodes were pre-assigned labels East and West, the pod
  deployment spec to distribute pods to these nodes would be:

.. code-block:: yaml

  nodeSelector:
    failure-domain.beta.Kubernetes.io/region: {{ .Values.location }}

- "location: West" is specified in the `values.yaml` file used to deploy
  one DCAE cluster and  "location: East" is specified in a second `values.yaml`
  file (see OOM Configuration Management for more information about
  configuration files like the `values.yaml` file).

Node affinity can also be used to achieve geographic redundancy if pods are
assigned to multiple failure domains. For more information refer to `Assigning
Pods to Nodes`_.

.. note::
   One could use Pod to Node assignment to totally constrain Kubernetes when
   doing initial container assignment to replicate the Amsterdam release
   OpenStack Heat based deployment. Should one wish to do this, each VM would
   need a unique node name which would be used to specify a node constaint
   for every component.  These assignment could be specified in an environment
   specific values.yaml file. Constraining Kubernetes in this way is not
   recommended.

Kubernetes has a comprehensive system called Taints and Tolerations that can be
used to force the container orchestrator to repel pods from nodes based on
static events (an administrator assigning a taint to a node) or dynamic events
(such as a node becoming unreachable or running out of disk space). There are
no plans to use taints or tolerations in the ONAP Beijing release.  Pod
affinity / anti-affinity is the concept of creating a spacial relationship
between pods when the Kubernetes orchestrator does assignment (both initially
an in operation) to nodes as explained in Inter-pod affinity and anti-affinity.
For example, one might choose to co-located all of the ONAP SDC containers on a
single node as they are not critical runtime components and co-location
minimizes overhead. On the other hand, one might choose to ensure that all of
the containers in an ODL cluster (SDNC and APPC) are placed on separate nodes
such that a node failure has minimal impact to the operation of the cluster.
An example of how pod affinity / anti-affinity is shown below:

Pod Affinity / Anti-Affinity

.. code-block:: yaml

  apiVersion: v1
  kind: Pod
  metadata:
    name: with-pod-affinity
  spec:
    affinity:
      podAffinity:
        requiredDuringSchedulingIgnoredDuringExecution:
        - labelSelector:
            matchExpressions:
        - key: security
          operator: In
          values:
          - S1
          topologyKey: failure-domain.beta.Kubernetes.io/zone
      podAntiAffinity:
        preferredDuringSchedulingIgnoredDuringExecution:
        - weight: 100
          podAffinityTerm:
            labelSelector:
              matchExpressions:
              - key: security
                operator: In
                values:
                - S2
            topologyKey: Kubernetes.io/hostname
       containers:
       - name: with-pod-affinity
         image: gcr.io/google_containers/pause:2.0

This example contains both podAffinity and podAntiAffinity rules, the first
rule is is a must (requiredDuringSchedulingIgnoredDuringExecution) while the
second will be met pending other considerations
(preferredDuringSchedulingIgnoredDuringExecution).  Preemption Another feature
that may assist in achieving a repeatable deployment in the presence of faults
that may have reduced the capacity of the cloud is assigning priority to the
containers such that mission critical components have the ability to evict less
critical components.  Kubernetes provides this capability with Pod Priority and
Preemption.  Prior to having more advanced production grade features available,
the ability to at least be able to re-deploy ONAP (or a subset of) reliably
provides a level of confidence that should an outage occur the system can be
brought back on-line predictably.

Health Checks
-------------

Monitoring of ONAP components is configured in the agents within JSON files and
stored in gerrit under the consul-agent-config, here is an example from the AAI
model loader (aai-model-loader-health.json):

.. code-block:: json

  {
    "service": {
      "name": "A&AI Model Loader",
      "checks": [
        {
          "id": "model-loader-process",
          "name": "Model Loader Presence",
          "script": "/consul/config/scripts/model-loader-script.sh",
          "interval": "15s",
          "timeout": "1s"
        }
      ]
    }
  }

Liveness Probes
---------------

These liveness probes can simply check that a port is available, that a
built-in health check is reporting good health, or that the Consul health check
is positive.  For example, to monitor the SDNC component has following liveness
probe can be found in the SDNC DB deployment specification:

.. code-block:: yaml

  sdnc db liveness probe

  livenessProbe:
    exec:
      command: ["mysqladmin", "ping"]
      initialDelaySeconds: 30 periodSeconds: 10
      timeoutSeconds: 5

The 'initialDelaySeconds' control the period of time between the readiness
probe succeeding and the liveness probe starting. 'periodSeconds' and
'timeoutSeconds' control the actual operation of the probe.  Note that
containers are inherently ephemeral so the healing action destroys failed
containers and any state information within it.  To avoid a loss of state, a
persistent volume should be used to store all data that needs to be persisted
over the re-creation of a container.  Persistent volumes have been created for
the database components of each of the projects and the same technique can be
used for all persistent state information.



Environment Files
~~~~~~~~~~~~~~~~~

MSB Integration
===============

The \ `Microservices Bus
Project <https://wiki.onap.org/pages/viewpage.action?pageId=3246982>`__ provides
facilities to integrate micro-services into ONAP and therefore needs to
integrate into OOM - primarily through Consul which is the backend of
MSB service discovery. The following is a brief description of how this
integration will be done:

A registrator to push the service endpoint info to MSB service
discovery. 

-  The needed service endpoint info is put into the kubernetes yaml file
   as annotation, including service name, Protocol,version, visual
   range,LB method, IP, Port,etc.

-  OOM deploy/start/restart/scale in/scale out/upgrade ONAP components

-  Registrator watch the kubernetes event

-  When an ONAP component instance has been started/destroyed by OOM,
   Registrator get the notification from kubernetes

-  Registrator parse the service endpoint info from annotation and
   register/update/unregister it to MSB service discovery

-  MSB API Gateway uses the service endpoint info for service routing
   and load balancing.

Details of the registration service API can be found at \ `Microservice
Bus API
Documentation <https://wiki.onap.org/display/DW/Microservice+Bus+API+Documentation>`__.

ONAP Component Registration to MSB
----------------------------------
The charts of all ONAP components intending to register against MSB must have
an annotation in their service(s) template.  A `sdc` example follows:

.. code-block:: yaml

  apiVersion: v1
  kind: Service
  metadata:
    labels:
      app: sdc-be
    name: sdc-be
    namespace: "{{ .Values.nsPrefix }}"
    annotations:
      msb.onap.org/service-info: '[
        {
            "serviceName": "sdc",
            "version": "v1",
            "url": "/sdc/v1",
            "protocol": "REST",
            "port": "8080",
            "visualRange":"1"
        },
        {
            "serviceName": "sdc-deprecated",
            "version": "v1",
            "url": "/sdc/v1",
            "protocol": "REST",
            "port": "8080",
            "visualRange":"1",
            "path":"/sdc/v1"
        }
        ]'
  ...


MSB Integration with OOM
------------------------
A preliminary view of the OOM-MSB integration is as follows:

.. figure:: MSB-OOM-Diagram.png

A message sequence chart of the registration process:

.. uml::

  participant "OOM" as oom
  participant "ONAP Component" as onap
  participant "Service Discovery" as sd
  participant "External API Gateway" as eagw
  participant "Router (Internal API Gateway)" as iagw

  box "MSB" #LightBlue
    participant sd
    participant eagw
    participant iagw
  end box

  == Deploy Servcie ==

  oom -> onap: Deploy
  oom -> sd:   Register service endpoints
  sd -> eagw:  Services exposed to external system
  sd -> iagw:  Services for internal use

  == Component Life-cycle Management ==

  oom -> onap: Start/Stop/Scale/Migrate/Upgrade
  oom -> sd:   Update service info
  sd -> eagw:  Update service info
  sd -> iagw:  Update service info

  == Service Health Check ==

  sd -> onap: Check the health of service
  sd -> eagw: Update service status
  sd -> iagw: Update service status


MSB Deployment Instructions
---------------------------
MSB is helm installable ONAP component which is often automatically deployed.
To install it individually enter::

  > helm install <repo-name>/msb

.. note::
  TBD: Vaidate if the following procedure is still required.

Please note that Kubernetes authentication token must be set at
*kubernetes/kube2msb/values.yaml* so the kube2msb registrator can get the
access to watch the kubernetes events and get service annotation by
Kubernetes APIs. The token can be found in the kubectl configuration file
*~/.kube/config*

More details can be found here `MSB installation <http://onap.readthedocs.io/en/latest/submodules/msb/apigateway.git/docs/platform/installation.html>`__.

.. MISC
.. ====
.. Note that although OOM uses Kubernetes facilities to minimize the effort
.. required of the ONAP component owners to implement a successful rolling
.. upgrade strategy there are other considerations that must be taken into
.. consideration.
.. For example, external APIs - both internal and external to ONAP - should be
.. designed to gracefully accept transactions from a peer at a different
.. software version to avoid deadlock situations. Embedded version codes in
.. messages may facilitate such capabilities.
..
.. Within each of the projects a new configuration repository contains all of
.. the project specific configuration artifacts.  As changes are made within
.. the project, it's the responsibility of the project team to make appropriate
.. changes to the configuration data.