aboutsummaryrefslogtreecommitdiffstats
path: root/docs/clamp/acm/acm-user-guide.rst
blob: 2ed49176526ab605b4754c5e927fdd192b9102da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
.. This work is licensed under a Creative Commons Attribution 4.0 International License.
.. http://creativecommons.org/licenses/by/4.0
.. Copyright (c) Nordix Foundation.  All rights reserved.

.. _acm-user-guide-label:

ACM user guide
##############

.. contents::
    :depth: 4

This guide helps the user to define their own composition definitions and explains the procedure to execute them via the
Clamp Automation Composition Management Framework. This guide briefly talks about the commissioning, instantiation and
deployment steps once the composition definitions are created.

Defining a composition
======================

A composition can be created in yaml/json format as per the TOSCA standard. Please refer to the below section to understand
the Tosca fundamental concepts and how an Automation Composition definition can be realised in the TOSCA.


.. toctree::
   :maxdepth: 2

   defining-acms

HowTo: My First Automation Composition
======================================

An example scenario is considered where we have a microservice that can be installed with a helm chart in kubernetes and
configured via REST api to perform some operation.This functionality can be realised as a composition in Tosca standard.
The various sections of the composition definition includes:

Data Types:
-----------
The user can define their own data types to be used in the composition definition. In this use case, we are defining three data types as follows.

onap.datatypes.ToscaConceptIdentifier:
  This is a composite data type that holds two key value pairs in it. This type is used as an identifier for automation
  element types and participant types.This holds two string properties "name" and "version" and hence this data type can
  be used for creating the other composition element ids.

onap.datatypes.clamp.acm.httpAutomationCompositionElement.RestRequest:
  The rest api request for configuring the microservice can use the RestRequest datatype for defining the request in TOSCA.
  This holds the string properties "httpMethod", "path", "body" and an integer property "expectedResponse" for defining
  the rest request.

  Note that the "restRequestId" property which is of type "onap.datatypes.ToscaConceptIdentifier" that was defined in the
  previous step.

onap.datatypes.clamp.acm.httpAutomationCompositionElement.ConfigurationEntity:
  This data type holds a list of rest requests in case a microservice requires more than one rest request for configuration.
  This holds the "configurationEntityId" which is of type "onap.datatypes.ToscaConceptIdentifier" and "restSequence" property
  to hold the list of "onap.datatypes.clamp.acm.httpAutomationCompositionElement.RestRequest"


.. literalinclude:: files/acm-datatypes.yaml
   :language: yaml


Node Types:
-----------
A Node Type is a reusable entity that defines the type of one or more Node Templates.
An Interface Type is a reusable entity that describes a set of operations that can be used to interact with or manage a
node or relationship in a TOSCA topology. The actual acm elements will be created under the Node templates deriving from
these node types. We are going to define the following element types for ACM:

org.onap.policy.clamp.acm.Participant:
  This is a participant element type to define various participants in ACM. It holds the string property "provider".

org.onap.policy.clamp.acm.AutomationCompositionElement:
  This node type defines the primitive Automation composition element type that includes various common properties for all
  the ACM elements.
  Here we are defining various timeout properties and startPhase parameter that are common for all the AC elements.

  Note: This node type value should not be changed as the ACM framework identifies the AC elements based on this type.

org.onap.policy.clamp.acm.K8SMicroserviceAutomationCompositionElement:
  This node type is used to define AC elements that are associated with kubernetes operations. It is further derived from the
  "org.onap.policy.clamp.acm.AutomationCompositionElement" type and hence supports its common properties and also includes
  additional properties related to helm charts.
  We are going to create kubernetes AC elements of this type, under the Node templates.

org.onap.policy.clamp.acm.HttpAutomationCompositionElement:
  Node type for AC elements associated with REST operations. It is derived from the "org.onap.policy.clamp.acm.AutomationCompositionElement"
  type and hence supports its common properties and also supports additional properties for REST operation.
  We are going to create a REST AC element of this type, under the Node templates.

org.onap.policy.clamp.acm.AutomationComposition:
  Primitive node type for defining Automation composition definitions that comprises one or more AC elements in it.
  The AC definition of this type will be created under the Node templates.

  Note: This node type value should not be changed as the ACM framework identifies the AC definitions based on this type.

.. literalinclude:: files/acm-nodetypes.yaml
   :language: yaml

Node Templates:
---------------
A Node Template specifies the occurrence of a manageable software component as part of an application's topology model
which is defined in a TOSCA Service Template. We create the actual participants and AC elements involved in this use case
under the node templates.
There are no element properties supplied at this point since it will be provided by the user during the instantiation.

org.onap.k8s.acm.K8SAutomationCompositionParticipant:
  A kubernetes participant element that processes the kubernetes AC elements in the composition.
  This element is of node type "org.onap.policy.clamp.acm.Participant"

onap.policy.clamp.ac.element.K8S_AutomationCompositionElement:
  An AC element for kubernetes helm chart installation of the microservice derived from the node type
  "org.onap.policy.clamp.acm.K8SMicroserviceAutomationCompositionElement".
  The common element properties are provided with values as part of commissioning the definition.

org.onap.policy.clamp.acm.HttpParticipant:
  A http participant element that processes the REST AC elements in the composition.
  This element is of type "org.onap.policy.clamp.acm.Participant"

onap.policy.clamp.ac.element.Http_AutomationCompositionElement:
 An AC element for REST operation in the microservice derived from the node type
 "org.onap.policy.clamp.acm.HttpAutomationCompositionElement".
 The common element properties startPhase and timeout are provided with values as part of commissioning the definition.

onap.policy.clamp.ac.element.AutomationCompositionDefinition:
 The actual Automation Composition definition that comprises the list of AC elements mapped to it.
 This element is of node type "org.onap.policy.clamp.acm.AutomationComposition"

.. literalinclude:: files/acm-nodetemplates.yaml
   :language: yaml

Completed tosca template :download:`click here <files/acm-tosca.yaml>`

Once the Tosca template definition is created, the ACM workflow can be executed to create and deploy the compositions.
Please refer the following section for running ACM workflow.

ACM workflow
============

ACM framework exposes REST interfaces for creating and deploying the user defined compositions. In this section, the
TOSCA template created in the previous step can be commissioned, and then AC instances can be created and deployed for
the same.

This section assumes that the user has read about the ACM APIs and Protocols documentation and understands the ACM
operations on a high level before proceeding with the workflow.


Prerequisites:
  - ACM components including acm-runtime, required participants (http and kubernetes in this case) and Dmaap/kafka clients are deployed in docker or kubernetes environment.
  - Kubernetes and Helm are installed.
  - Chartmuseum server is installed to host the acelement microservice helm chart. (`Procedure to install chartmuseum <https://wiki.onap.org/display/DW/Microk8s+and+helm+setup+in+Ubuntu>`_.)
  - The helm chart for ACM test microservice is available in the policy/clamp repository that can be cloned locally and uploaded to the chartmuseum using helm push.(`AC element helm chart <https://github.com/onap/policy-clamp/tree/master/examples/src/main/resources/clamp/acm/acelement-helm>`_.)

Please refer the `ACM swagger document <https://raw.githubusercontent.com/onap/policy-clamp/master/runtime-acm/src/main/resources/openapi/openapi.yaml>`_. for REST API information for all the ACM operations.
This section guides through the various steps involved in executing the ACM workflow for deploying the test microservice element.

Commissioning the AC definition
-------------------------------
Commissioning refers to storing the composition definition on the ACM database. The created tosca template is posted as a request payload.

.. code-block:: bash

  Invoke a POST request 'http://policy_runtime_ip:port/onap/policy/clamp/acm/v2/compositions'

This returns a 202 response on the successful creation of the composition definition.

Note:
  The rest response returns the compositionId on a successful creation that requires to be used in the subsequent requests.

Prime AC definitions
--------------------
Priming associates the AC elements with suitable participants and sends the corresponding AC element information to the participants.

.. code-block:: bash

  Invoke a PUT request 'http://policy_runtime_ip:port/onap/policy/clamp/acm/v2/compositions/${compositionId}'

Request payload

.. literalinclude:: files/AC-priming.json
   :language: json

This returns a 202 response on a successful priming.

Instantiate AutomationComposition
---------------------------------
Instantiation refers to creating an AC instance on the database by initialising the element properties for each element in the composition.
These values requires to be provided by the user as per their use case requirement. In this case, we are passing the helm chart information
of the test microservice for the Ac element "onap.policy.clamp.ac.element.K8S_AutomationCompositionElement" which will be processed and installed
by the kubernetes participant on a deployment request.

Similarly the REST request data that are to be executed on the microservice will be passed on for the http AC element "onap.policy.clamp.ac.element.Http_AutomationCompositionElement"
which will be executed by the http participant. Please refer to the properties of the elements in the json payload.

Note:
  In this scenario, the kubernetes element requires to be invoked first to install the helm chart and then the http element needs to be invoked to configure the microservice.
  This is achieved by using the "startPhase" property on the AC element properties. The elements with the startPhase value defined are executed on a sequence starting from the least value to the higher value.
  Each element in the request payload is assigned with a uniques UUID which will be automatically generated by the GUI in the upcoming releases.

.. code-block:: bash

  Invoke a POST request
  'http://policy_runtime_ip:port/onap/policy/clamp/acm/v2/compositions/${compositionId}/instances'

The compositionId retrieved from the previous step should be updated in the request body. This returns a 201 response on a successful instantiation.
This also returns the instanceId in the response that can be used in the subsequent requests.

Request payload

.. literalinclude:: files/AC-instantiation.json
   :language: json

Update AC instance properties (Optional)
----------------------------------------
Before the AC instance is deployed, the user is allowed to update the instance property values if needed. The runtime updates these new values
in the database.

.. code-block:: bash

  Invoke a POST request
  'http://policy_runtime_ip:port/onap/policy/clamp/acm/v2/compositions/${compositionId}/instances'

Request Payload

Example payload to update the base url of the http request

.. literalinclude:: files/AC-update.json
   :language: json


Deploy AC instance
------------------
Once the AC instance is created, the user can deploy the instance which in turn activates the corresponding participants to execute the intended operations.
In this case, the kubernetes participant will be installing the test microservice helm chart on the kubernetes cluster and the http participant will be
executing the REST requests on the microservice endpoints.

.. code-block:: bash

  Invoke a PUT request
  'http://policy_runtime_ip:port/onap/policy/clamp/acm/v2/compositions/${compositionId}/instances/${instanceId}'

This returns a 202 response on a successful deploy order request. The elements will be in "DEPLOYING" state until the completion and then the state of
the elements are updated to "DEPLOYED"
The current status of the deployment can be fetched through the following endpoint.

.. code-block:: bash

  Invoke a GET request
  'http://policy_runtime_ip:port/onap/policy/clamp/acm/v2/compositions/${compositionId}/instances/${instanceId}'

Request payload

.. literalinclude:: files/AC-deploy.json
   :language: json

Note:
  The user can further implement the admin states 'LOCK' and 'UNLOCK' on the participants to further cascade the deployment operations.
  If these states are implemented, then a subsequent request to LOCK and UNLOCK requires to be triggered following the deployment.

Once all the AC elements are deployed, there should be a test microservice pod running on the kubernetes cluster which is
configured to send events on the kafka by the http participant. This can be verified on the test microservice application logs.
The AC instances can also be undeployed and deleted by the user.

Update AC instance properties after deployment (Optional)
---------------------------------------------------------
After the AC instance is deployed, the user can still update the instance property values if needed. In this case, the runtime updates these new values
in the database and also sends an update event to the participants. The participants has to implement the update method to perform the
required operation.

.. code-block:: bash

  Invoke a POST request
  'http://policy_runtime_ip:port/onap/policy/clamp/acm/v2/compositions/${compositionId}/instances'

Note:
  Please refer the request payload section for updating the instance properties before deployment.

UnDeploy AutomationComposition
------------------------------
The AC instances can be undeployed from the system by the participants.

.. code-block:: bash

  Invoke a PUT request
  'http://policy_runtime_ip:port/onap/policy/clamp/acm/v2/compositions/${compositionId}/instances/${instanceId}'

This returns a 202 response on successful deploy order request.

Request payload

.. literalinclude:: files/AC-undeploy.json
   :language: json

Uninstantiate AC instance
-------------------------
This deletes the AC instance from the database including all the element properties that are initialised.

.. code-block:: bash

  Invoke a DELETE request
  'http://policy_runtime_ip:port/onap/policy/clamp/acm/v2/compositions/${compositionId}/instances/${instanceId}'

This returns a 202 response on successful delete order request.

Deprime Ac defintions
---------------------
Once the AC instance is deleted, it can be deprimed from the participants to be safely deleted from the database.

.. code-block:: bash

  Invoke a PUT request 'http://policy_runtime_ip:port/onap/policy/clamp/acm/v2/compositions/${compositionId}'

This returns a 202 response on a successful operation.

Request payload

.. literalinclude:: files/AC-depriming.json
   :language: json

Delete AC defintion
-------------------
The AC definitions can be deleted if there are no instances are running and it is not primed to the participants.

.. code-block:: bash

  Invoke a DELETE request 'http://policy_runtime_ip:port/onap/policy/clamp/acm/v2/compositions/${compositionId}'

This return a 200 response on a successful deletion operation.

Participant simulator
=====================
Participant simulator do not execute any particular functionality, and can be used to mock one or more participants in debug tests.
It should be used to test ACM-runtime and Participant Intermediary in specific scenario that could be difficult to replay in real environment.

Functionality covered:

#. Set participantId and supportedElementType by properties file or by parameter environment.
#. Set a delay for each operation at runtime by Rest-Api.
#. Set success or fail for each operation at runtime by Rest-Api.
#. update useState, operationalState and outPropeties and send to ACM-runtime by Rest-Api.
#. read all AC instance elements information by Rest-Api.

Mock a participant using docker-compose
---------------------------------------
The follow example show a docker-compose configuration to mock http Participant, where 'onap/policy-clamp-ac-sim-ppnt' is the Participant simulator image:

.. code-block:: yaml

  http-participant:
    image: onap/policy-clamp-ac-sim-ppnt
    environment:
      - participantId=101c62b3-8918-41b9-a747-d21eb79c6c01
      - supportedElementTypeName=org.onap.policy.clamp.acm.HttpAutomationCompositionElement
      - SERVER_SSL_ENABLED=false
      - useHttps=false
      - SERVER_PORT=8084
    ports:
      - "8084:8084"

Set delay and success/fail
--------------------------
Parameters like delay and success/fail could be set any time using the following endpoint:

.. code-block:: bash

  Invoke a PUT request 'http://participant_sim_ip:port/onap/policy/clamp/acm/simparticipant/v2/parameters'

The Json below is an example of configuration:

.. code-block:: json

  {
    "deploySuccess": true,
    "undeploySuccess": true,
    "lockSuccess": true,
    "unlockSuccess": true,
    "deleteSuccess": true,
    "updateSuccess": true,
    "primeSuccess": true,
    "deprimeSuccess": true,
    "deployTimerMs": 1000,
    "undeployTimerMs": 1000,
    "lockTimerMs": 100,
    "unlockTimerMs": 100,
    "updateTimerMs": 100,
    "deleteTimerMs": 100,
    "primeTimerMs": 100,
    "deprimeTimerMs": 100
  }

Update and send useState operationalState and outProperites
-----------------------------------------------------------
Data like useState operationalState and outProperites could be updated any time using the following endpoint:

.. code-block:: bash

  Invoke a PUT request 'http://participant_sim_ip:port/onap/policy/clamp/acm/simparticipant/v2/datas'

The Json below is an example of update, where {{instanceId}} is the UUID of the AC instance and {{instanceElementId}} is the UUID of the AC instance element:

.. code-block:: json

  {
        "outProperties": {
            "Opresult": true,
            "list": [
                {"id": 1 },
                {"id": 2 }
            ]
        },
        "automationCompositionId": "{{instanceId}}",
        "automationCompositionElementId": "{{instanceElementId}}",
        "useState": "IDLE",
        "operationalState": "ENABLED"
  }

Read all AC instance elements information
-----------------------------------------
All AC instance elements information like deployState, lockState, useState, operationalState, inProperties and outProperties
could be read using the following endpoint:

.. code-block:: bash

  Invoke a GET request 'http://participant_sim_ip:port/onap/policy/clamp/acm/simparticipant/v2/instances'