diff options
Diffstat (limited to 'examples')
-rw-r--r-- | examples/examples-adaptive/src/main/java/org/onap/policy/apex/examples/adaptive/model/java/AutoLearnPolicyDecideTaskSelectionLogic.java | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/examples/examples-adaptive/src/main/java/org/onap/policy/apex/examples/adaptive/model/java/AutoLearnPolicyDecideTaskSelectionLogic.java b/examples/examples-adaptive/src/main/java/org/onap/policy/apex/examples/adaptive/model/java/AutoLearnPolicyDecideTaskSelectionLogic.java index 32387d047..ef697b077 100644 --- a/examples/examples-adaptive/src/main/java/org/onap/policy/apex/examples/adaptive/model/java/AutoLearnPolicyDecideTaskSelectionLogic.java +++ b/examples/examples-adaptive/src/main/java/org/onap/policy/apex/examples/adaptive/model/java/AutoLearnPolicyDecideTaskSelectionLogic.java @@ -49,10 +49,10 @@ public class AutoLearnPolicyDecideTaskSelectionLogic { public boolean getTask(final TaskSelectionExecutionContext executor) { String idString = executor.subject.getId(); executor.logger.debug(idString); - + String inFieldsString = executor.inFields.toString(); executor.logger.debug(inFieldsString); - + final List<String> tasks = executor.subject.getTaskNames(); size = tasks.size(); @@ -144,22 +144,22 @@ public class AutoLearnPolicyDecideTaskSelectionLogic { autoLearn.setAvDiffs(Arrays.asList(avdiffs)); autoLearn.setCounts(Arrays.asList(counts)); } - /** - * Calculate the return value of the learning + * Calculate the return value of the learning. + * * @param diff the difference - * @param r the random value + * @param random the random value * @param closestupi closest to i upwards * @param closestdowni closest to i downwards * @param closestup closest up value * @param closestdown closest down value * @return the return value */ - private int calculateReturnValue(final double diff, final int r, int closestupi, int closestdowni, double closestup, - double closestdown) { + private int calculateReturnValue(final double diff, final int random, int closestupi, int closestdowni, + double closestup, double closestdown) { if (closestupi == -1 || closestdowni == -1) { - return r; + return random; } if (closestupi == closestdowni) { return closestupi; |