diff options
author | Dinh Danh Le <dinh.danh.le@ericsson.com> | 2018-08-29 17:21:52 +0100 |
---|---|---|
committer | Dinh Danh Le <dinh.danh.le@ericsson.com> | 2018-09-05 12:48:49 +0100 |
commit | 825ae627d4378c5cc7ab4b7d5f4b4ffefcb7977e (patch) | |
tree | ad4ca360252379ed8e07bc5c599cd4aa6e240199 /examples/examples-adaptive/src | |
parent | f7689b84472ab4698d9d96f1de08402208d99ca8 (diff) |
Fix checkstyle warnings in examples
Change-Id: Iad533f3987792d8713426234f3277c1ef6b72284
Issue-ID: POLICY-1034
Signed-off-by: Dinh Danh Le <dinh.danh.le@ericsson.com>
Diffstat (limited to 'examples/examples-adaptive/src')
9 files changed, 124 insertions, 115 deletions
diff --git a/examples/examples-adaptive/src/main/java/org/onap/policy/apex/examples/adaptive/model/java/AnomalyDetectionPolicy_Decide_TaskSelectionLogic.java b/examples/examples-adaptive/src/main/java/org/onap/policy/apex/examples/adaptive/model/java/AnomalyDetectionPolicy_Decide_TaskSelectionLogic.java index a044ad14b..2a654c38e 100644 --- a/examples/examples-adaptive/src/main/java/org/onap/policy/apex/examples/adaptive/model/java/AnomalyDetectionPolicy_Decide_TaskSelectionLogic.java +++ b/examples/examples-adaptive/src/main/java/org/onap/policy/apex/examples/adaptive/model/java/AnomalyDetectionPolicy_Decide_TaskSelectionLogic.java @@ -47,15 +47,18 @@ public class AnomalyDetectionPolicy_Decide_TaskSelectionLogic { /** * A map to hold the Anomaly degree/levels/probabilities required for each task.<br> - * If there is no task defined for a calculated anomaly-degree, then the default task is used.<br> - * The map use (LinkedHashMap) is an insertion-ordered map, so the first interval matching a query is used. + * If there is no task defined for a calculated anomaly-degree, then the default task is + * used.<br> + * The map use (LinkedHashMap) is an insertion-ordered map, so the first interval matching a + * query is used. */ // CHECKSTYLE:OFF: checkstyle:magicNumber private static final Map<double[], String> TASK_INTERVALS = new LinkedHashMap<>(); + static { - TASK_INTERVALS.put(new double[] { 0.0, 0.1 }, null); // null will mean default task - TASK_INTERVALS.put(new double[] { 0.25, 0.5 }, "AnomalyDetectionDecideTask1"); - TASK_INTERVALS.put(new double[] { 0.5, 1.01 }, "AnomalyDetectionDecideTask2"); + TASK_INTERVALS.put(new double[] {0.0, 0.1}, null); // null will mean default task + TASK_INTERVALS.put(new double[] {0.25, 0.5}, "AnomalyDetectionDecideTask1"); + TASK_INTERVALS.put(new double[] {0.5, 1.01}, "AnomalyDetectionDecideTask2"); } // CHECKSTYLE:ON: checkstyle:magicNumber @@ -74,8 +77,8 @@ public class AnomalyDetectionPolicy_Decide_TaskSelectionLogic { logger.debug(executor.inFields.toString()); final double now = (Double) (executor.inFields.get("MonitoredValue")); final Integer iteration = (Integer) (executor.inFields.get("Iteration")); - final double[] vals = this.forecastingAndAnomaly(now); // double[forecastedValue, AnomalyScore, - // AnomalyProbability] + // get the double[forecastedValue, AnomalyScore, AnomalyProbability] + final double[] vals = this.forecastingAndAnomaly(now); final double anomalyness = vals[2]; String task = null; for (final Map.Entry<double[], String> i : TASK_INTERVALS.entrySet()) { @@ -103,8 +106,8 @@ public class AnomalyDetectionPolicy_Decide_TaskSelectionLogic { * Anomaly detection and forecast. * * @param value The current value - * @return Null if the function can not be executed correctly, otherwise double[forecastedValue, AnomalyScore, - * AnomalyProbability] + * @return Null if the function can not be executed correctly, otherwise double[forecastedValue, + * AnomalyScore, AnomalyProbability] */ public double[] forecastingAndAnomaly(final double value) { try { @@ -167,7 +170,7 @@ public class AnomalyDetectionPolicy_Decide_TaskSelectionLogic { double anomalyProbability = 0.0; if (anomalyDetection.getAnomalyScores().size() > 30) { // 0.5 - anomalyProbability = gStatsTest(anomalyDetection.getAnomalyScores(), ANOMALY_SENSITIVITY); + anomalyProbability = getStatsTest(anomalyDetection.getAnomalyScores(), ANOMALY_SENSITIVITY); } // CHECKSTYLE:ON: checkstyle:magicNumber @@ -178,16 +181,16 @@ public class AnomalyDetectionPolicy_Decide_TaskSelectionLogic { return null; } - return new double[] { forecastedValue, anomalyScore, anomalyProbability }; + return new double[] {forecastedValue, anomalyScore, anomalyProbability}; } /** - * Is the passed value inside the interval, i.e. (value<interval[1] && value>=interval[0]) + * Is the passed value inside the interval, i.e. (value < interval[1] && value>=interval[0]). * * @param value The value to check * @param interval A 2 element double array describing an interval - * @return true if the value is between interval[0] (inclusive) and interval[1] (exclusive), i.e. (value<interval[1] - * && value>=interval[0]). Otherwise false; + * @return true if the value is between interval[0] (inclusive) and interval[1] (exclusive), + * i.e. (value < interval[1] && value>=interval[0]). Otherwise false; */ private static boolean checkInterval(final double value, final double[] interval) { if (interval == null || interval.length != 2) { @@ -203,100 +206,89 @@ public class AnomalyDetectionPolicy_Decide_TaskSelectionLogic { * * @param values the values * @param significanceLevel the significance level - * @return the double + * @return the anomaly probability */ - private static double gStatsTest(final List<Double> values, final double significanceLevel) { + private static double getStatsTest(final List<Double> values, final double significanceLevel) { if (isAllEqual(values)) { return 0.0; } // the targeted value or the last value final double currentV = values.get(values.size() - 1); - Double[] lValuesCopy = values.toArray(new Double[values.size()]); - Arrays.sort(lValuesCopy); // takes ~40% of method time - // if(logger.isDebugEnabled()){ - // logger.debug("values:" + Arrays.toString(lValuesCopy)); - // } + Double[] lvaluesCopy = values.toArray(new Double[values.size()]); + Arrays.sort(lvaluesCopy); // takes ~40% of method time // get mean - double mean = getMean(lValuesCopy); - // get the test value: v - double v = getV(lValuesCopy, mean, true); + double mean = getMean(lvaluesCopy); + // get the test value: val + double val = getV(lvaluesCopy, mean, true); // get the p value for the test value - double pValue = getPValue(lValuesCopy, v, mean); // takes approx 25% of method time - // if(logger.isDebugEnabled()){ - // logger.debug("pValue:" + pValue); - // } + double pvalue = getPValue(lvaluesCopy, val, mean); // takes approx 25% of method time // check the critical level - while (pValue < significanceLevel) { // takes approx 20% of method time + while (pvalue < significanceLevel) { // takes approx 20% of method time // the score value as the anomaly probability - final double score = (significanceLevel - pValue) / significanceLevel; - if (Double.compare(v, currentV) == 0) { + final double score = (significanceLevel - pvalue) / significanceLevel; + if (Double.compare(val, currentV) == 0) { return score; } // do the critical check again for the left values - lValuesCopy = removevalue(lValuesCopy, v); - if (isAllEqual(lValuesCopy)) { + lvaluesCopy = removevalue(lvaluesCopy, val); + if (isAllEqual(lvaluesCopy)) { return 0.0; } - // if(logger.isDebugEnabled()){ - // logger.debug("left values:" + Arrays.toString(lValuesCopy)); - // } - mean = getMean(lValuesCopy); - v = getV(lValuesCopy, mean, true); - pValue = getPValue(lValuesCopy, v, mean); + + mean = getMean(lvaluesCopy); + val = getV(lvaluesCopy, mean, true); + pvalue = getPValue(lvaluesCopy, val, mean); } return 0.0; } /** - * get the test value based on mean from sorted values. + * Get the test value based on mean from sorted values. * - * @param lValues the l values + * @param lvalues the l values * @param mean the mean * @param maxValueOnly : only the max extreme value will be tested * @return the value to be tested */ - private static double getV(final Double[] lValues, final double mean, final boolean maxValueOnly) { - double v = lValues[lValues.length - 1]; + private static double getV(final Double[] lvalues, final double mean, final boolean maxValueOnly) { + double val = lvalues[lvalues.length - 1]; // max value as the extreme value if (maxValueOnly) { - return v; + return val; } // check the extreme side - if ((v - mean) < (mean - lValues[0])) { - v = lValues[0]; + if ((val - mean) < (mean - lvalues[0])) { + val = lvalues[0]; } - return v; + return val; } /** * calculate the P value for the t distribution. * - * @param lValues the l values - * @param v the v + * @param lvalues the l values + * @param val the value * @param mean the mean * @return the p value */ - private static double getPValue(final Double[] lValues, final double v, final double mean) { + private static double getPValue(final Double[] lvalues, final double val, final double mean) { // calculate z value - final double z = FastMath.abs(v - mean) / getStdDev(lValues, mean); - // logger.debug("z: " + z); + final double z = FastMath.abs(val - mean) / getStdDev(lvalues, mean); // calculate T - final double n = lValues.length; + final double n = lvalues.length; final double s = (z * z * n * (2.0 - n)) / (z * z * n - (n - 1.0) * (n - 1.0)); final double t = FastMath.sqrt(s); - // logger.debug("t:" + t); // default p value = 0 - double pValue = 0.0; + double pvalue = 0.0; if (!Double.isNaN(t)) { // t distribution with n-2 degrees of freedom final TDistribution tDist = new TDistribution(n - 2); - pValue = n * (1.0 - tDist.cumulativeProbability(t)); - // set max pValue = 1 - pValue = pValue > 1.0 ? 1.0 : pValue; + pvalue = n * (1.0 - tDist.cumulativeProbability(t)); + // set max pvalue = 1 + pvalue = pvalue > 1.0 ? 1.0 : pvalue; } - // logger.debug("value: "+ v + " , pValue: " + pValue); - return pValue; + return pvalue; } /* @@ -318,52 +310,52 @@ public class AnomalyDetectionPolicy_Decide_TaskSelectionLogic { } /** - * Remove the first occurence of the value v from the array. + * Remove the first occurrence of the value val from the array. * - * @param lValues the l values - * @param v the v + * @param lvalues the l values + * @param val the value * @return the double[] */ - private static Double[] removevalue(final Double[] lValues, final double v) { - for (int i = 0; i < lValues.length; i++) { - if (Double.compare(lValues[i], v) == 0) { - final Double[] ret = new Double[lValues.length - 1]; - System.arraycopy(lValues, 0, ret, 0, i); - System.arraycopy(lValues, i + 1, ret, i, lValues.length - i - 1); + private static Double[] removevalue(final Double[] lvalues, final double val) { + for (int i = 0; i < lvalues.length; i++) { + if (Double.compare(lvalues[i], val) == 0) { + final Double[] ret = new Double[lvalues.length - 1]; + System.arraycopy(lvalues, 0, ret, 0, i); + System.arraycopy(lvalues, i + 1, ret, i, lvalues.length - i - 1); return ret; } } - return lValues; + return lvalues; } /** * get mean value of double list. * - * @param lValues the l values + * @param lvalues the l values * @return the mean */ - private static double getMean(final Double[] lValues) { + private static double getMean(final Double[] lvalues) { double sum = 0.0; - for (final double d : lValues) { + for (final double d : lvalues) { sum += d; } - return sum / lValues.length; + return sum / lvalues.length; } /** * get standard deviation of double list. * - * @param lValues the l values + * @param lvalues the l values * @param mean the mean * @return stddev */ - private static double getStdDev(final Double[] lValues, final double mean) { + private static double getStdDev(final Double[] lvalues, final double mean) { double temp = 0.0; - for (final double d : lValues) { + for (final double d : lvalues) { temp += (mean - d) * (mean - d); } - return FastMath.sqrt(temp / lValues.length); + return FastMath.sqrt(temp / lvalues.length); } /** @@ -383,12 +375,12 @@ public class AnomalyDetectionPolicy_Decide_TaskSelectionLogic { /** * return true if all values are equal. * - * @param lValues the l values + * @param lvalues the l values * @return true, if checks if is all equal */ - private static boolean isAllEqual(final List<Double> lValues) { - final double first = lValues.get(0); - for (final Double d : lValues) { + private static boolean isAllEqual(final List<Double> lvalues) { + final double first = lvalues.get(0); + for (final Double d : lvalues) { if (Double.compare(d, first) != 0) { return false; } @@ -399,12 +391,12 @@ public class AnomalyDetectionPolicy_Decide_TaskSelectionLogic { /** * return true if all values are equal. * - * @param lValues the l values + * @param lvalues the l values * @return true, if checks if is all equal */ - private static boolean isAllEqual(final Double[] lValues) { - final double first = lValues[0]; - for (final Double d : lValues) { + private static boolean isAllEqual(final Double[] lvalues) { + final double first = lvalues[0]; + for (final Double d : lvalues) { if (Double.compare(d, first) != 0) { return false; } diff --git a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionDBWrite.java b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionDbWrite.java index 9affa7876..8f54bf12f 100644 --- a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionDBWrite.java +++ b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionDbWrite.java @@ -31,10 +31,14 @@ import org.onap.policy.apex.model.basicmodel.dao.DaoParameters; import org.onap.policy.apex.model.basicmodel.test.TestApexModel; import org.onap.policy.apex.model.policymodel.concepts.AxPolicyModel; -public class TestAnomalyDetectionDBWrite { +public class TestAnomalyDetectionDbWrite { private Connection connection; TestApexModel<AxPolicyModel> testApexModel; + /** + * Sets up embedded Derby database and the Apex anomaly detection model for the tests. + * @throws Exception exception to be thrown while setting up the database connection + */ @Before public void setup() throws Exception { Class.forName("org.apache.derby.jdbc.EmbeddedDriver").newInstance(); @@ -50,11 +54,10 @@ public class TestAnomalyDetectionDBWrite { } @Test - public void testModelWriteReadJPA() throws Exception { + public void testModelWriteReadJpa() throws Exception { final DaoParameters DaoParameters = new DaoParameters(); DaoParameters.setPluginClass("org.onap.policy.apex.model.basicmodel.dao.impl.DefaultApexDao"); DaoParameters.setPersistenceUnit("AdaptiveModelsTest"); - testApexModel.testApexModelWriteReadJpa(DaoParameters); } } diff --git a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionModel.java b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionModel.java index 3782f2d88..9e631ef2e 100644 --- a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionModel.java +++ b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionModel.java @@ -38,6 +38,10 @@ public class TestAnomalyDetectionModel { private Connection connection; TestApexModel<AxPolicyModel> testApexModel; + /** + * Sets up embedded Derby database and the Apex anomaly detection model for the tests. + * @throws Exception exception to be thrown while setting up the database connection + */ @Before public void setup() throws Exception { Class.forName("org.apache.derby.jdbc.EmbeddedDriver").newInstance(); @@ -59,17 +63,17 @@ public class TestAnomalyDetectionModel { } @Test - public void testModelWriteReadXML() throws Exception { + public void testModelWriteReadXml() throws Exception { testApexModel.testApexModelWriteReadXml(); } @Test - public void testModelWriteReadJSON() throws Exception { + public void testModelWriteReadJson() throws Exception { testApexModel.testApexModelWriteReadJson(); } @Test - public void testModelWriteReadJPA() throws Exception { + public void testModelWriteReadJpa() throws Exception { final DaoParameters DaoParameters = new DaoParameters(); DaoParameters.setPluginClass("org.onap.policy.apex.model.basicmodel.dao.impl.DefaultApexDao"); DaoParameters.setPersistenceUnit("AdaptiveModelsTest"); diff --git a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionModelCreator.java b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionModelCreator.java index 2b50d69ab..439452cec 100644 --- a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionModelCreator.java +++ b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionModelCreator.java @@ -25,6 +25,7 @@ import org.onap.policy.apex.model.basicmodel.test.TestApexModelCreator; import org.onap.policy.apex.model.policymodel.concepts.AxPolicyModel; /** + * The class TestAnomalyDetectionModelCreator. * @author Liam Fallon (liam.fallon@ericsson.com) */ public class TestAnomalyDetectionModelCreator implements TestApexModelCreator<AxPolicyModel> { diff --git a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionTSLUseCase.java b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionTslUseCase.java index 3d3fad973..1925a53f5 100644 --- a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionTSLUseCase.java +++ b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAnomalyDetectionTslUseCase.java @@ -56,8 +56,8 @@ import org.slf4j.ext.XLoggerFactory; * * @author John Keeney (John.Keeney@ericsson.com) */ -public class TestAnomalyDetectionTSLUseCase { - private static final XLogger LOGGER = XLoggerFactory.getXLogger(TestAnomalyDetectionTSLUseCase.class); +public class TestAnomalyDetectionTslUseCase { + private static final XLogger LOGGER = XLoggerFactory.getXLogger(TestAnomalyDetectionTslUseCase.class); private static final int MAXITERATIONS = 3660; private static final Random RAND = new Random(System.currentTimeMillis()); @@ -107,7 +107,7 @@ public class TestAnomalyDetectionTSLUseCase { @Test // once through the long running test below - public void TestAnomalyDetectionTSL() throws ApexException, InterruptedException, IOException { + public void testAnomalyDetectionTsl() throws ApexException, InterruptedException, IOException { final AxPolicyModel apexPolicyModel = new AdaptiveDomainModelFactory().getAnomalyDetectionPolicyModel(); assertNotNull(apexPolicyModel); @@ -156,10 +156,10 @@ public class TestAnomalyDetectionTSLUseCase { // Test is disabled by default. uncomment below, or execute using the main() method // @Test // EG Dos command: apex-core.engine> mvn - // -Dtest=org.onap.policy.apex.core.engine.ml.TestAnomalyDetectionTSLUseCase test | findstr /L /C:"Apex [main] DEBUG + // -Dtest=org.onap.policy.apex.core.engine.ml.TestAnomalyDetectionTslUseCase test | findstr /L /C:"Apex [main] DEBUG // c.e.a.e.TaskSelectionExecutionLogging - // TestAnomalyDetectionTSL_Policy0000DecideStateTaskSelectionLogic.getTask():" - public void TestAnomalyDetectionTSL_main() throws ApexException, InterruptedException, IOException { + public void testAnomalyDetectionTslmain() throws ApexException, InterruptedException, IOException { final AxPolicyModel apexPolicyModel = new AdaptiveDomainModelFactory().getAnomalyDetectionPolicyModel(); assertNotNull(apexPolicyModel); @@ -206,6 +206,6 @@ public class TestAnomalyDetectionTSLUseCase { } public static void main(final String[] args) throws ApexException, InterruptedException, IOException { - new TestAnomalyDetectionTSLUseCase().TestAnomalyDetectionTSL_main(); + new TestAnomalyDetectionTslUseCase().testAnomalyDetectionTslmain(); } } diff --git a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnDBWrite.java b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnDbWrite.java index e096105d9..d4c1ab193 100644 --- a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnDBWrite.java +++ b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnDbWrite.java @@ -31,10 +31,14 @@ import org.onap.policy.apex.model.basicmodel.dao.DaoParameters; import org.onap.policy.apex.model.basicmodel.test.TestApexModel; import org.onap.policy.apex.model.policymodel.concepts.AxPolicyModel; -public class TestAutoLearnDBWrite { +public class TestAutoLearnDbWrite { private Connection connection; TestApexModel<AxPolicyModel> testApexModel; + /** + * Sets up embedded Derby database and the Apex AutoLearn model for the tests. + * @throws Exception exception to be thrown while setting up the database connection + */ @Before public void setup() throws Exception { Class.forName("org.apache.derby.jdbc.EmbeddedDriver").newInstance(); @@ -50,7 +54,7 @@ public class TestAutoLearnDBWrite { } @Test - public void testModelWriteReadJPA() throws Exception { + public void testModelWriteReadJpa() throws Exception { final DaoParameters DaoParameters = new DaoParameters(); DaoParameters.setPluginClass("org.onap.policy.apex.model.basicmodel.dao.impl.DefaultApexDao"); DaoParameters.setPersistenceUnit("AdaptiveModelsTest"); diff --git a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnModel.java b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnModel.java index beb7a9c80..9bf7ce57a 100644 --- a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnModel.java +++ b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnModel.java @@ -38,6 +38,10 @@ public class TestAutoLearnModel { private Connection connection; TestApexModel<AxPolicyModel> testApexModel; + /** + * Sets up embedded Derby database and the Apex AutoLearn model for the tests. + * @throws Exception exception to be thrown while setting up the database connection + */ @Before public void setup() throws Exception { Class.forName("org.apache.derby.jdbc.EmbeddedDriver").newInstance(); @@ -59,17 +63,17 @@ public class TestAutoLearnModel { } @Test - public void testModelWriteReadXML() throws Exception { + public void testModelWriteReadXml() throws Exception { testApexModel.testApexModelWriteReadXml(); } @Test - public void testModelWriteReadJSON() throws Exception { + public void testModelWriteReadJson() throws Exception { testApexModel.testApexModelWriteReadJson(); } @Test - public void testModelWriteReadJPA() throws Exception { + public void testModelWriteReadJpa() throws Exception { final DaoParameters DaoParameters = new DaoParameters(); DaoParameters.setPluginClass("org.onap.policy.apex.model.basicmodel.dao.impl.DefaultApexDao"); DaoParameters.setPersistenceUnit("AdaptiveModelsTest"); diff --git a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnModelCreator.java b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnModelCreator.java index 11f1991bf..35d049dc7 100644 --- a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnModelCreator.java +++ b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnModelCreator.java @@ -25,6 +25,7 @@ import org.onap.policy.apex.model.basicmodel.test.TestApexModelCreator; import org.onap.policy.apex.model.policymodel.concepts.AxPolicyModel; /** + * The class TestAutoLearnModelCreator. * @author Liam Fallon (liam.fallon@ericsson.com) */ public class TestAutoLearnModelCreator implements TestApexModelCreator<AxPolicyModel> { diff --git a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnTSLUseCase.java b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnTslUseCase.java index 723b56653..ce9a07e16 100644 --- a/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnTSLUseCase.java +++ b/examples/examples-adaptive/src/test/java/org/onap/policy/apex/examples/adaptive/TestAutoLearnTslUseCase.java @@ -54,8 +54,8 @@ import org.slf4j.ext.XLoggerFactory; * * @author John Keeney (John.Keeney@ericsson.com) */ -public class TestAutoLearnTSLUseCase { - private static final XLogger LOGGER = XLoggerFactory.getXLogger(TestAutoLearnTSLUseCase.class); +public class TestAutoLearnTslUseCase { + private static final XLogger LOGGER = XLoggerFactory.getXLogger(TestAutoLearnTslUseCase.class); private static final int MAXITERATIONS = 1000; private static final Random rand = new Random(System.currentTimeMillis()); @@ -105,7 +105,7 @@ public class TestAutoLearnTSLUseCase { @Test // once through the long running test below - public void TestAutoLearnTSL() throws ApexException, InterruptedException, IOException { + public void testAutoLearnTsl() throws ApexException, InterruptedException, IOException { final AxPolicyModel apexPolicyModel = new AdaptiveDomainModelFactory().getAutoLearnPolicyModel(); assertNotNull(apexPolicyModel); @@ -153,9 +153,9 @@ public class TestAutoLearnTSLUseCase { * @throws IOException Signals that an I/O exception has occurred. */ // @Test - public void TestAutoLearnTSL_main() throws ApexException, InterruptedException, IOException { + public void testAutoLearnTslMain() throws ApexException, InterruptedException, IOException { - final double WANT = 50.0; + final double dwant = 50.0; final double toleranceTileJump = 3.0; final AxPolicyModel apexPolicyModel = new AdaptiveDomainModelFactory().getAutoLearnPolicyModel(); @@ -179,10 +179,10 @@ public class TestAutoLearnTSLUseCase { final EnEvent triggerEvent = apexEngine1.createEvent(new AxArtifactKey("AutoLearnTriggerEvent", "0.0.1")); assertNotNull(triggerEvent); - final double MIN = -100; - final double MAX = 100; + final double dmin = -100; + final double dmax = 100; - double rval = (((rand.nextGaussian() + 1) / 2) * (MAX - MIN)) + MIN; + double rval = (((rand.nextGaussian() + 1) / 2) * (dmax - dmin)) + dmin; triggerEvent.put("MonitoredValue", rval); triggerEvent.put("LastMonitoredValue", 0); @@ -207,13 +207,13 @@ public class TestAutoLearnTSLUseCase { avcount = Math.min((avcount + 1), 20); // maintain average of only the last 20 values avval = ((avval * (avcount - 1)) + val) / (avcount); - distance = Math.abs(WANT - avval); + distance = Math.abs(dwant - avval); if (distance < toleranceTileJump) { - rval = (((rand.nextGaussian() + 1) / 2) * (MAX - MIN)) + MIN; + rval = (((rand.nextGaussian() + 1) / 2) * (dmax - dmin)) + dmin; val = rval; triggerEvent.put("MonitoredValue", val); LOGGER.info("Iteration " + iteration + ": Average " + avval + " has become closer (" + distance - + ") than " + toleranceTileJump + " to " + WANT + " so reseting val:\t\t\t\t\t\t\t\t" + val); + + ") than " + toleranceTileJump + " to " + dwant + " so reseting val:\t\t\t\t\t\t\t\t" + val); avval = 0; avcount = 0; } @@ -229,6 +229,6 @@ public class TestAutoLearnTSLUseCase { } public static void main(final String[] args) throws ApexException, InterruptedException, IOException { - new TestAutoLearnTSLUseCase().TestAutoLearnTSL_main(); + new TestAutoLearnTslUseCase().testAutoLearnTslMain(); } } |