% Number of nodes
int: N;
% Start node
0..N-1: Start;
% End node
0..N-1: End;
% Number of edges (directed arcs)
int: M;
% The actual edges
set of int: Edges = 1..M;
% Edge lengths
array[Edges] of int: L;
% Edge start node
array[Edges] of 0..N-1: Edge_Start;
array[Edges] of 0..N-1: Edge_End;
% Variable indicating if edge is used
array[Edges] of var 0..1: x;
constraint
forall( i in 0..N-1 ) (
if i = Start then
% outgoing flow
sum(e in Edges where Edge_Start[e] = i)(x[e]) -
% incoming flow
sum(e in Edges where Edge_End[e] = i)(x[e])
= 1
elseif i = End then
sum(e in Edges where Edge_Start[e] = i)(x[e]) -
sum(e in Edges where Edge_End[e] = i)(x[e])
= -1
else
sum(e in Edges where Edge_Start[e] = i)(x[e]) -
sum(e in Edges where Edge_End[e] = i)(x[e])
= 0
endif
);
solve minimize sum(e in Edges)( L[e] * x[e] );
%solve satisfy;
output ["Length: ", show(sum(e in Edges)(L[e] * x[e])), "\n"] ++
["Start : ", show(Start), "\n"] ++
["End : ", show(End), "\n\n"] ++
["Edges in shortest path:\n"] ++
[ if fix(x[e]) = 1
then show(Edge_Start[e]) ++ " -> " ++ show(Edge_End[e]) ++ "\n"
else ""
endif | e in Edges
];