aboutsummaryrefslogtreecommitdiffstats
path: root/kube2msb/src/vendor/github.com/ugorji/go/codec/helper.go
blob: 40065a01c8b79ba8c08d90cec6886d943357754e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.

package codec

// Contains code shared by both encode and decode.

// Some shared ideas around encoding/decoding
// ------------------------------------------
//
// If an interface{} is passed, we first do a type assertion to see if it is
// a primitive type or a map/slice of primitive types, and use a fastpath to handle it.
//
// If we start with a reflect.Value, we are already in reflect.Value land and
// will try to grab the function for the underlying Type and directly call that function.
// This is more performant than calling reflect.Value.Interface().
//
// This still helps us bypass many layers of reflection, and give best performance.
//
// Containers
// ------------
// Containers in the stream are either associative arrays (key-value pairs) or
// regular arrays (indexed by incrementing integers).
//
// Some streams support indefinite-length containers, and use a breaking
// byte-sequence to denote that the container has come to an end.
//
// Some streams also are text-based, and use explicit separators to denote the
// end/beginning of different values.
//
// During encode, we use a high-level condition to determine how to iterate through
// the container. That decision is based on whether the container is text-based (with
// separators) or binary (without separators). If binary, we do not even call the
// encoding of separators.
//
// During decode, we use a different high-level condition to determine how to iterate
// through the containers. That decision is based on whether the stream contained
// a length prefix, or if it used explicit breaks. If length-prefixed, we assume that
// it has to be binary, and we do not even try to read separators.
//
// The only codec that may suffer (slightly) is cbor, and only when decoding indefinite-length.
// It may suffer because we treat it like a text-based codec, and read separators.
// However, this read is a no-op and the cost is insignificant.
//
// Philosophy
// ------------
// On decode, this codec will update containers appropriately:
//    - If struct, update fields from stream into fields of struct.
//      If field in stream not found in struct, handle appropriately (based on option).
//      If a struct field has no corresponding value in the stream, leave it AS IS.
//      If nil in stream, set value to nil/zero value.
//    - If map, update map from stream.
//      If the stream value is NIL, set the map to nil.
//    - if slice, try to update up to length of array in stream.
//      if container len is less than stream array length,
//      and container cannot be expanded, handled (based on option).
//      This means you can decode 4-element stream array into 1-element array.
//
// ------------------------------------
// On encode, user can specify omitEmpty. This means that the value will be omitted
// if the zero value. The problem may occur during decode, where omitted values do not affect
// the value being decoded into. This means that if decoding into a struct with an
// int field with current value=5, and the field is omitted in the stream, then after
// decoding, the value will still be 5 (not 0).
// omitEmpty only works if you guarantee that you always decode into zero-values.
//
// ------------------------------------
// We could have truncated a map to remove keys not available in the stream,
// or set values in the struct which are not in the stream to their zero values.
// We decided against it because there is no efficient way to do it.
// We may introduce it as an option later.
// However, that will require enabling it for both runtime and code generation modes.
//
// To support truncate, we need to do 2 passes over the container:
//   map
//   - first collect all keys (e.g. in k1)
//   - for each key in stream, mark k1 that the key should not be removed
//   - after updating map, do second pass and call delete for all keys in k1 which are not marked
//   struct:
//   - for each field, track the *typeInfo s1
//   - iterate through all s1, and for each one not marked, set value to zero
//   - this involves checking the possible anonymous fields which are nil ptrs.
//     too much work.
//
// ------------------------------------------
// Error Handling is done within the library using panic.
//
// This way, the code doesn't have to keep checking if an error has happened,
// and we don't have to keep sending the error value along with each call
// or storing it in the En|Decoder and checking it constantly along the way.
//
// The disadvantage is that small functions which use panics cannot be inlined.
// The code accounts for that by only using panics behind an interface;
// since interface calls cannot be inlined, this is irrelevant.
//
// We considered storing the error is En|Decoder.
//   - once it has its err field set, it cannot be used again.
//   - panicing will be optional, controlled by const flag.
//   - code should always check error first and return early.
// We eventually decided against it as it makes the code clumsier to always
// check for these error conditions.

import (
	"bytes"
	"encoding"
	"encoding/binary"
	"errors"
	"fmt"
	"math"
	"reflect"
	"sort"
	"strings"
	"sync"
	"time"
)

const (
	scratchByteArrayLen = 32
	initCollectionCap   = 32 // 32 is defensive. 16 is preferred.

	// Support encoding.(Binary|Text)(Unm|M)arshaler.
	// This constant flag will enable or disable it.
	supportMarshalInterfaces = true

	// Each Encoder or Decoder uses a cache of functions based on conditionals,
	// so that the conditionals are not run every time.
	//
	// Either a map or a slice is used to keep track of the functions.
	// The map is more natural, but has a higher cost than a slice/array.
	// This flag (useMapForCodecCache) controls which is used.
	//
	// From benchmarks, slices with linear search perform better with < 32 entries.
	// We have typically seen a high threshold of about 24 entries.
	useMapForCodecCache = false

	// for debugging, set this to false, to catch panic traces.
	// Note that this will always cause rpc tests to fail, since they need io.EOF sent via panic.
	recoverPanicToErr = true

	// Fast path functions try to create a fast path encode or decode implementation
	// for common maps and slices, by by-passing reflection altogether.
	fastpathEnabled = true

	// if checkStructForEmptyValue, check structs fields to see if an empty value.
	// This could be an expensive call, so possibly disable it.
	checkStructForEmptyValue = false

	// if derefForIsEmptyValue, deref pointers and interfaces when checking isEmptyValue
	derefForIsEmptyValue = false

	// if resetSliceElemToZeroValue, then on decoding a slice, reset the element to a zero value first.
	// Only concern is that, if the slice already contained some garbage, we will decode into that garbage.
	// The chances of this are slim, so leave this "optimization".
	// TODO: should this be true, to ensure that we always decode into a "zero" "empty" value?
	resetSliceElemToZeroValue bool = false
)

var (
	oneByteArr    = [1]byte{0}
	zeroByteSlice = oneByteArr[:0:0]
)

type charEncoding uint8

const (
	c_RAW charEncoding = iota
	c_UTF8
	c_UTF16LE
	c_UTF16BE
	c_UTF32LE
	c_UTF32BE
)

// valueType is the stream type
type valueType uint8

const (
	valueTypeUnset valueType = iota
	valueTypeNil
	valueTypeInt
	valueTypeUint
	valueTypeFloat
	valueTypeBool
	valueTypeString
	valueTypeSymbol
	valueTypeBytes
	valueTypeMap
	valueTypeArray
	valueTypeTimestamp
	valueTypeExt

	// valueTypeInvalid = 0xff
)

type seqType uint8

const (
	_ seqType = iota
	seqTypeArray
	seqTypeSlice
	seqTypeChan
)

// note that containerMapStart and containerArraySend are not sent.
// This is because the ReadXXXStart and EncodeXXXStart already does these.
type containerState uint8

const (
	_ containerState = iota

	containerMapStart // slot left open, since Driver method already covers it
	containerMapKey
	containerMapValue
	containerMapEnd
	containerArrayStart // slot left open, since Driver methods already cover it
	containerArrayElem
	containerArrayEnd
)

type rgetPoolT struct {
	encNames [8]string
	fNames   [8]string
	etypes   [8]uintptr
	sfis     [8]*structFieldInfo
}

var rgetPool = sync.Pool{
	New: func() interface{} { return new(rgetPoolT) },
}

type rgetT struct {
	fNames   []string
	encNames []string
	etypes   []uintptr
	sfis     []*structFieldInfo
}

type containerStateRecv interface {
	sendContainerState(containerState)
}

// mirror json.Marshaler and json.Unmarshaler here,
// so we don't import the encoding/json package
type jsonMarshaler interface {
	MarshalJSON() ([]byte, error)
}
type jsonUnmarshaler interface {
	UnmarshalJSON([]byte) error
}

var (
	bigen               = binary.BigEndian
	structInfoFieldName = "_struct"

	mapStrIntfTyp  = reflect.TypeOf(map[string]interface{}(nil))
	mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil))
	intfSliceTyp   = reflect.TypeOf([]interface{}(nil))
	intfTyp        = intfSliceTyp.Elem()

	stringTyp     = reflect.TypeOf("")
	timeTyp       = reflect.TypeOf(time.Time{})
	rawExtTyp     = reflect.TypeOf(RawExt{})
	uint8SliceTyp = reflect.TypeOf([]uint8(nil))

	mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem()

	binaryMarshalerTyp   = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
	binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()

	textMarshalerTyp   = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
	textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()

	jsonMarshalerTyp   = reflect.TypeOf((*jsonMarshaler)(nil)).Elem()
	jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem()

	selferTyp = reflect.TypeOf((*Selfer)(nil)).Elem()

	uint8SliceTypId = reflect.ValueOf(uint8SliceTyp).Pointer()
	rawExtTypId     = reflect.ValueOf(rawExtTyp).Pointer()
	intfTypId       = reflect.ValueOf(intfTyp).Pointer()
	timeTypId       = reflect.ValueOf(timeTyp).Pointer()
	stringTypId     = reflect.ValueOf(stringTyp).Pointer()

	mapStrIntfTypId  = reflect.ValueOf(mapStrIntfTyp).Pointer()
	mapIntfIntfTypId = reflect.ValueOf(mapIntfIntfTyp).Pointer()
	intfSliceTypId   = reflect.ValueOf(intfSliceTyp).Pointer()
	// mapBySliceTypId  = reflect.ValueOf(mapBySliceTyp).Pointer()

	intBitsize  uint8 = uint8(reflect.TypeOf(int(0)).Bits())
	uintBitsize uint8 = uint8(reflect.TypeOf(uint(0)).Bits())

	bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0}
	bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}

	chkOvf checkOverflow

	noFieldNameToStructFieldInfoErr = errors.New("no field name passed to parseStructFieldInfo")
)

var defTypeInfos = NewTypeInfos([]string{"codec", "json"})

// Selfer defines methods by which a value can encode or decode itself.
//
// Any type which implements Selfer will be able to encode or decode itself.
// Consequently, during (en|de)code, this takes precedence over
// (text|binary)(M|Unm)arshal or extension support.
type Selfer interface {
	CodecEncodeSelf(*Encoder)
	CodecDecodeSelf(*Decoder)
}

// MapBySlice represents a slice which should be encoded as a map in the stream.
// The slice contains a sequence of key-value pairs.
// This affords storing a map in a specific sequence in the stream.
//
// The support of MapBySlice affords the following:
//   - A slice type which implements MapBySlice will be encoded as a map
//   - A slice can be decoded from a map in the stream
type MapBySlice interface {
	MapBySlice()
}

// WARNING: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED.
//
// BasicHandle encapsulates the common options and extension functions.
type BasicHandle struct {
	// TypeInfos is used to get the type info for any type.
	//
	// If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json
	TypeInfos *TypeInfos

	extHandle
	EncodeOptions
	DecodeOptions
}

func (x *BasicHandle) getBasicHandle() *BasicHandle {
	return x
}

func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
	if x.TypeInfos != nil {
		return x.TypeInfos.get(rtid, rt)
	}
	return defTypeInfos.get(rtid, rt)
}

// Handle is the interface for a specific encoding format.
//
// Typically, a Handle is pre-configured before first time use,
// and not modified while in use. Such a pre-configured Handle
// is safe for concurrent access.
type Handle interface {
	getBasicHandle() *BasicHandle
	newEncDriver(w *Encoder) encDriver
	newDecDriver(r *Decoder) decDriver
	isBinary() bool
}

// RawExt represents raw unprocessed extension data.
// Some codecs will decode extension data as a *RawExt if there is no registered extension for the tag.
//
// Only one of Data or Value is nil. If Data is nil, then the content of the RawExt is in the Value.
type RawExt struct {
	Tag uint64
	// Data is the []byte which represents the raw ext. If Data is nil, ext is exposed in Value.
	// Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types
	Data []byte
	// Value represents the extension, if Data is nil.
	// Value is used by codecs (e.g. cbor) which use the format to do custom serialization of the types.
	Value interface{}
}

// BytesExt handles custom (de)serialization of types to/from []byte.
// It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types.
type BytesExt interface {
	// WriteExt converts a value to a []byte.
	//
	// Note: v *may* be a pointer to the extension type, if the extension type was a struct or array.
	WriteExt(v interface{}) []byte

	// ReadExt updates a value from a []byte.
	ReadExt(dst interface{}, src []byte)
}

// InterfaceExt handles custom (de)serialization of types to/from another interface{} value.
// The Encoder or Decoder will then handle the further (de)serialization of that known type.
//
// It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of the types.
type InterfaceExt interface {
	// ConvertExt converts a value into a simpler interface for easy encoding e.g. convert time.Time to int64.
	//
	// Note: v *may* be a pointer to the extension type, if the extension type was a struct or array.
	ConvertExt(v interface{}) interface{}

	// UpdateExt updates a value from a simpler interface for easy decoding e.g. convert int64 to time.Time.
	UpdateExt(dst interface{}, src interface{})
}

// Ext handles custom (de)serialization of custom types / extensions.
type Ext interface {
	BytesExt
	InterfaceExt
}

// addExtWrapper is a wrapper implementation to support former AddExt exported method.
type addExtWrapper struct {
	encFn func(reflect.Value) ([]byte, error)
	decFn func(reflect.Value, []byte) error
}

func (x addExtWrapper) WriteExt(v interface{}) []byte {
	bs, err := x.encFn(reflect.ValueOf(v))
	if err != nil {
		panic(err)
	}
	return bs
}

func (x addExtWrapper) ReadExt(v interface{}, bs []byte) {
	if err := x.decFn(reflect.ValueOf(v), bs); err != nil {
		panic(err)
	}
}

func (x addExtWrapper) ConvertExt(v interface{}) interface{} {
	return x.WriteExt(v)
}

func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) {
	x.ReadExt(dest, v.([]byte))
}

type setExtWrapper struct {
	b BytesExt
	i InterfaceExt
}

func (x *setExtWrapper) WriteExt(v interface{}) []byte {
	if x.b == nil {
		panic("BytesExt.WriteExt is not supported")
	}
	return x.b.WriteExt(v)
}

func (x *setExtWrapper) ReadExt(v interface{}, bs []byte) {
	if x.b == nil {
		panic("BytesExt.WriteExt is not supported")

	}
	x.b.ReadExt(v, bs)
}

func (x *setExtWrapper) ConvertExt(v interface{}) interface{} {
	if x.i == nil {
		panic("InterfaceExt.ConvertExt is not supported")

	}
	return x.i.ConvertExt(v)
}

func (x *setExtWrapper) UpdateExt(dest interface{}, v interface{}) {
	if x.i == nil {
		panic("InterfaceExxt.UpdateExt is not supported")

	}
	x.i.UpdateExt(dest, v)
}

// type errorString string
// func (x errorString) Error() string { return string(x) }

type binaryEncodingType struct{}

func (_ binaryEncodingType) isBinary() bool { return true }

type textEncodingType struct{}

func (_ textEncodingType) isBinary() bool { return false }

// noBuiltInTypes is embedded into many types which do not support builtins
// e.g. msgpack, simple, cbor.
type noBuiltInTypes struct{}

func (_ noBuiltInTypes) IsBuiltinType(rt uintptr) bool           { return false }
func (_ noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {}
func (_ noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {}

type noStreamingCodec struct{}

func (_ noStreamingCodec) CheckBreak() bool { return false }

// bigenHelper.
// Users must already slice the x completely, because we will not reslice.
type bigenHelper struct {
	x []byte // must be correctly sliced to appropriate len. slicing is a cost.
	w encWriter
}

func (z bigenHelper) writeUint16(v uint16) {
	bigen.PutUint16(z.x, v)
	z.w.writeb(z.x)
}

func (z bigenHelper) writeUint32(v uint32) {
	bigen.PutUint32(z.x, v)
	z.w.writeb(z.x)
}

func (z bigenHelper) writeUint64(v uint64) {
	bigen.PutUint64(z.x, v)
	z.w.writeb(z.x)
}

type extTypeTagFn struct {
	rtid uintptr
	rt   reflect.Type
	tag  uint64
	ext  Ext
}

type extHandle []extTypeTagFn

// DEPRECATED: Use SetBytesExt or SetInterfaceExt on the Handle instead.
//
// AddExt registes an encode and decode function for a reflect.Type.
// AddExt internally calls SetExt.
// To deregister an Ext, call AddExt with nil encfn and/or nil decfn.
func (o *extHandle) AddExt(
	rt reflect.Type, tag byte,
	encfn func(reflect.Value) ([]byte, error), decfn func(reflect.Value, []byte) error,
) (err error) {
	if encfn == nil || decfn == nil {
		return o.SetExt(rt, uint64(tag), nil)
	}
	return o.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn})
}

// DEPRECATED: Use SetBytesExt or SetInterfaceExt on the Handle instead.
//
// Note that the type must be a named type, and specifically not
// a pointer or Interface. An error is returned if that is not honored.
//
// To Deregister an ext, call SetExt with nil Ext
func (o *extHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
	// o is a pointer, because we may need to initialize it
	if rt.PkgPath() == "" || rt.Kind() == reflect.Interface {
		err = fmt.Errorf("codec.Handle.AddExt: Takes named type, especially not a pointer or interface: %T",
			reflect.Zero(rt).Interface())
		return
	}

	rtid := reflect.ValueOf(rt).Pointer()
	for _, v := range *o {
		if v.rtid == rtid {
			v.tag, v.ext = tag, ext
			return
		}
	}

	if *o == nil {
		*o = make([]extTypeTagFn, 0, 4)
	}
	*o = append(*o, extTypeTagFn{rtid, rt, tag, ext})
	return
}

func (o extHandle) getExt(rtid uintptr) *extTypeTagFn {
	var v *extTypeTagFn
	for i := range o {
		v = &o[i]
		if v.rtid == rtid {
			return v
		}
	}
	return nil
}

func (o extHandle) getExtForTag(tag uint64) *extTypeTagFn {
	var v *extTypeTagFn
	for i := range o {
		v = &o[i]
		if v.tag == tag {
			return v
		}
	}
	return nil
}

type structFieldInfo struct {
	encName string // encode name

	// only one of 'i' or 'is' can be set. If 'i' is -1, then 'is' has been set.

	is        []int // (recursive/embedded) field index in struct
	i         int16 // field index in struct
	omitEmpty bool
	toArray   bool // if field is _struct, is the toArray set?
}

// func (si *structFieldInfo) isZero() bool {
// 	return si.encName == "" && len(si.is) == 0 && si.i == 0 && !si.omitEmpty && !si.toArray
// }

// rv returns the field of the struct.
// If anonymous, it returns an Invalid
func (si *structFieldInfo) field(v reflect.Value, update bool) (rv2 reflect.Value) {
	if si.i != -1 {
		v = v.Field(int(si.i))
		return v
	}
	// replicate FieldByIndex
	for _, x := range si.is {
		for v.Kind() == reflect.Ptr {
			if v.IsNil() {
				if !update {
					return
				}
				v.Set(reflect.New(v.Type().Elem()))
			}
			v = v.Elem()
		}
		v = v.Field(x)
	}
	return v
}

func (si *structFieldInfo) setToZeroValue(v reflect.Value) {
	if si.i != -1 {
		v = v.Field(int(si.i))
		v.Set(reflect.Zero(v.Type()))
		// v.Set(reflect.New(v.Type()).Elem())
		// v.Set(reflect.New(v.Type()))
	} else {
		// replicate FieldByIndex
		for _, x := range si.is {
			for v.Kind() == reflect.Ptr {
				if v.IsNil() {
					return
				}
				v = v.Elem()
			}
			v = v.Field(x)
		}
		v.Set(reflect.Zero(v.Type()))
	}
}

func parseStructFieldInfo(fname string, stag string) *structFieldInfo {
	// if fname == "" {
	// 	panic(noFieldNameToStructFieldInfoErr)
	// }
	si := structFieldInfo{
		encName: fname,
	}

	if stag != "" {
		for i, s := range strings.Split(stag, ",") {
			if i == 0 {
				if s != "" {
					si.encName = s
				}
			} else {
				if s == "omitempty" {
					si.omitEmpty = true
				} else if s == "toarray" {
					si.toArray = true
				}
			}
		}
	}
	// si.encNameBs = []byte(si.encName)
	return &si
}

type sfiSortedByEncName []*structFieldInfo

func (p sfiSortedByEncName) Len() int {
	return len(p)
}

func (p sfiSortedByEncName) Less(i, j int) bool {
	return p[i].encName < p[j].encName
}

func (p sfiSortedByEncName) Swap(i, j int) {
	p[i], p[j] = p[j], p[i]
}

// typeInfo keeps information about each type referenced in the encode/decode sequence.
//
// During an encode/decode sequence, we work as below:
//   - If base is a built in type, en/decode base value
//   - If base is registered as an extension, en/decode base value
//   - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method
//   - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method
//   - Else decode appropriately based on the reflect.Kind
type typeInfo struct {
	sfi  []*structFieldInfo // sorted. Used when enc/dec struct to map.
	sfip []*structFieldInfo // unsorted. Used when enc/dec struct to array.

	rt   reflect.Type
	rtid uintptr

	numMeth uint16 // number of methods

	// baseId gives pointer to the base reflect.Type, after deferencing
	// the pointers. E.g. base type of ***time.Time is time.Time.
	base      reflect.Type
	baseId    uintptr
	baseIndir int8 // number of indirections to get to base

	mbs bool // base type (T or *T) is a MapBySlice

	bm        bool // base type (T or *T) is a binaryMarshaler
	bunm      bool // base type (T or *T) is a binaryUnmarshaler
	bmIndir   int8 // number of indirections to get to binaryMarshaler type
	bunmIndir int8 // number of indirections to get to binaryUnmarshaler type

	tm        bool // base type (T or *T) is a textMarshaler
	tunm      bool // base type (T or *T) is a textUnmarshaler
	tmIndir   int8 // number of indirections to get to textMarshaler type
	tunmIndir int8 // number of indirections to get to textUnmarshaler type

	jm        bool // base type (T or *T) is a jsonMarshaler
	junm      bool // base type (T or *T) is a jsonUnmarshaler
	jmIndir   int8 // number of indirections to get to jsonMarshaler type
	junmIndir int8 // number of indirections to get to jsonUnmarshaler type

	cs      bool // base type (T or *T) is a Selfer
	csIndir int8 // number of indirections to get to Selfer type

	toArray bool // whether this (struct) type should be encoded as an array
}

func (ti *typeInfo) indexForEncName(name string) int {
	//tisfi := ti.sfi
	const binarySearchThreshold = 16
	if sfilen := len(ti.sfi); sfilen < binarySearchThreshold {
		// linear search. faster than binary search in my testing up to 16-field structs.
		for i, si := range ti.sfi {
			if si.encName == name {
				return i
			}
		}
	} else {
		// binary search. adapted from sort/search.go.
		h, i, j := 0, 0, sfilen
		for i < j {
			h = i + (j-i)/2
			if ti.sfi[h].encName < name {
				i = h + 1
			} else {
				j = h
			}
		}
		if i < sfilen && ti.sfi[i].encName == name {
			return i
		}
	}
	return -1
}

// TypeInfos caches typeInfo for each type on first inspection.
//
// It is configured with a set of tag keys, which are used to get
// configuration for the type.
type TypeInfos struct {
	infos map[uintptr]*typeInfo
	mu    sync.RWMutex
	tags  []string
}

// NewTypeInfos creates a TypeInfos given a set of struct tags keys.
//
// This allows users customize the struct tag keys which contain configuration
// of their types.
func NewTypeInfos(tags []string) *TypeInfos {
	return &TypeInfos{tags: tags, infos: make(map[uintptr]*typeInfo, 64)}
}

func (x *TypeInfos) structTag(t reflect.StructTag) (s string) {
	// check for tags: codec, json, in that order.
	// this allows seamless support for many configured structs.
	for _, x := range x.tags {
		s = t.Get(x)
		if s != "" {
			return s
		}
	}
	return
}

func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
	var ok bool
	x.mu.RLock()
	pti, ok = x.infos[rtid]
	x.mu.RUnlock()
	if ok {
		return
	}

	// do not hold lock while computing this.
	// it may lead to duplication, but that's ok.
	ti := typeInfo{rt: rt, rtid: rtid}
	ti.numMeth = uint16(rt.NumMethod())

	var indir int8
	if ok, indir = implementsIntf(rt, binaryMarshalerTyp); ok {
		ti.bm, ti.bmIndir = true, indir
	}
	if ok, indir = implementsIntf(rt, binaryUnmarshalerTyp); ok {
		ti.bunm, ti.bunmIndir = true, indir
	}
	if ok, indir = implementsIntf(rt, textMarshalerTyp); ok {
		ti.tm, ti.tmIndir = true, indir
	}
	if ok, indir = implementsIntf(rt, textUnmarshalerTyp); ok {
		ti.tunm, ti.tunmIndir = true, indir
	}
	if ok, indir = implementsIntf(rt, jsonMarshalerTyp); ok {
		ti.jm, ti.jmIndir = true, indir
	}
	if ok, indir = implementsIntf(rt, jsonUnmarshalerTyp); ok {
		ti.junm, ti.junmIndir = true, indir
	}
	if ok, indir = implementsIntf(rt, selferTyp); ok {
		ti.cs, ti.csIndir = true, indir
	}
	if ok, _ = implementsIntf(rt, mapBySliceTyp); ok {
		ti.mbs = true
	}

	pt := rt
	var ptIndir int8
	// for ; pt.Kind() == reflect.Ptr; pt, ptIndir = pt.Elem(), ptIndir+1 { }
	for pt.Kind() == reflect.Ptr {
		pt = pt.Elem()
		ptIndir++
	}
	if ptIndir == 0 {
		ti.base = rt
		ti.baseId = rtid
	} else {
		ti.base = pt
		ti.baseId = reflect.ValueOf(pt).Pointer()
		ti.baseIndir = ptIndir
	}

	if rt.Kind() == reflect.Struct {
		var siInfo *structFieldInfo
		if f, ok := rt.FieldByName(structInfoFieldName); ok {
			siInfo = parseStructFieldInfo(structInfoFieldName, x.structTag(f.Tag))
			ti.toArray = siInfo.toArray
		}
		pi := rgetPool.Get()
		pv := pi.(*rgetPoolT)
		pv.etypes[0] = ti.baseId
		vv := rgetT{pv.fNames[:0], pv.encNames[:0], pv.etypes[:1], pv.sfis[:0]}
		x.rget(rt, rtid, nil, &vv, siInfo)
		ti.sfip = make([]*structFieldInfo, len(vv.sfis))
		ti.sfi = make([]*structFieldInfo, len(vv.sfis))
		copy(ti.sfip, vv.sfis)
		sort.Sort(sfiSortedByEncName(vv.sfis))
		copy(ti.sfi, vv.sfis)
		rgetPool.Put(pi)
	}
	// sfi = sfip

	x.mu.Lock()
	if pti, ok = x.infos[rtid]; !ok {
		pti = &ti
		x.infos[rtid] = pti
	}
	x.mu.Unlock()
	return
}

func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr,
	indexstack []int, pv *rgetT, siInfo *structFieldInfo,
) {
	// This will read up the fields and store how to access the value.
	// It uses the go language's rules for embedding, as below:
	//   - if a field has been seen while traversing, skip it
	//   - if an encName has been seen while traversing, skip it
	//   - if an embedded type has been seen, skip it
	//
	// Also, per Go's rules, embedded fields must be analyzed AFTER all top-level fields.
	//
	// Note: we consciously use slices, not a map, to simulate a set.
	//       Typically, types have < 16 fields, and iteration using equals is faster than maps there

	type anonField struct {
		ft  reflect.Type
		idx int
	}

	var anonFields []anonField

LOOP:
	for j, jlen := 0, rt.NumField(); j < jlen; j++ {
		f := rt.Field(j)
		fkind := f.Type.Kind()
		// skip if a func type, or is unexported, or structTag value == "-"
		switch fkind {
		case reflect.Func, reflect.Complex64, reflect.Complex128, reflect.UnsafePointer:
			continue LOOP
		}

		// if r1, _ := utf8.DecodeRuneInString(f.Name); r1 == utf8.RuneError || !unicode.IsUpper(r1) {
		if f.PkgPath != "" && !f.Anonymous { // unexported, not embedded
			continue
		}
		stag := x.structTag(f.Tag)
		if stag == "-" {
			continue
		}
		var si *structFieldInfo
		// if anonymous and no struct tag (or it's blank), and a struct (or pointer to struct), inline it.
		if f.Anonymous && fkind != reflect.Interface {
			doInline := stag == ""
			if !doInline {
				si = parseStructFieldInfo("", stag)
				doInline = si.encName == ""
				// doInline = si.isZero()
			}
			if doInline {
				ft := f.Type
				for ft.Kind() == reflect.Ptr {
					ft = ft.Elem()
				}
				if ft.Kind() == reflect.Struct {
					// handle anonymous fields after handling all the non-anon fields
					anonFields = append(anonFields, anonField{ft, j})
					continue
				}
			}
		}

		// after the anonymous dance: if an unexported field, skip
		if f.PkgPath != "" { // unexported
			continue
		}

		if f.Name == "" {
			panic(noFieldNameToStructFieldInfoErr)
		}

		for _, k := range pv.fNames {
			if k == f.Name {
				continue LOOP
			}
		}
		pv.fNames = append(pv.fNames, f.Name)

		if si == nil {
			si = parseStructFieldInfo(f.Name, stag)
		} else if si.encName == "" {
			si.encName = f.Name
		}

		for _, k := range pv.encNames {
			if k == si.encName {
				continue LOOP
			}
		}
		pv.encNames = append(pv.encNames, si.encName)

		// si.ikind = int(f.Type.Kind())
		if len(indexstack) == 0 {
			si.i = int16(j)
		} else {
			si.i = -1
			si.is = make([]int, len(indexstack)+1)
			copy(si.is, indexstack)
			si.is[len(indexstack)] = j
			// si.is = append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
		}

		if siInfo != nil {
			if siInfo.omitEmpty {
				si.omitEmpty = true
			}
		}
		pv.sfis = append(pv.sfis, si)
	}

	// now handle anonymous fields
LOOP2:
	for _, af := range anonFields {
		// if etypes contains this, then do not call rget again (as the fields are already seen here)
		ftid := reflect.ValueOf(af.ft).Pointer()
		for _, k := range pv.etypes {
			if k == ftid {
				continue LOOP2
			}
		}
		pv.etypes = append(pv.etypes, ftid)

		indexstack2 := make([]int, len(indexstack)+1)
		copy(indexstack2, indexstack)
		indexstack2[len(indexstack)] = af.idx
		// indexstack2 := append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
		x.rget(af.ft, ftid, indexstack2, pv, siInfo)
	}
}

func panicToErr(err *error) {
	if recoverPanicToErr {
		if x := recover(); x != nil {
			//debug.PrintStack()
			panicValToErr(x, err)
		}
	}
}

// func doPanic(tag string, format string, params ...interface{}) {
// 	params2 := make([]interface{}, len(params)+1)
// 	params2[0] = tag
// 	copy(params2[1:], params)
// 	panic(fmt.Errorf("%s: "+format, params2...))
// }

func isImmutableKind(k reflect.Kind) (v bool) {
	return false ||
		k == reflect.Int ||
		k == reflect.Int8 ||
		k == reflect.Int16 ||
		k == reflect.Int32 ||
		k == reflect.Int64 ||
		k == reflect.Uint ||
		k == reflect.Uint8 ||
		k == reflect.Uint16 ||
		k == reflect.Uint32 ||
		k == reflect.Uint64 ||
		k == reflect.Uintptr ||
		k == reflect.Float32 ||
		k == reflect.Float64 ||
		k == reflect.Bool ||
		k == reflect.String
}

// these functions must be inlinable, and not call anybody
type checkOverflow struct{}

func (_ checkOverflow) Float32(f float64) (overflow bool) {
	if f < 0 {
		f = -f
	}
	return math.MaxFloat32 < f && f <= math.MaxFloat64
}

func (_ checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) {
	if bitsize == 0 || bitsize >= 64 || v == 0 {
		return
	}
	if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
		overflow = true
	}
	return
}

func (_ checkOverflow) Int(v int64, bitsize uint8) (overflow bool) {
	if bitsize == 0 || bitsize >= 64 || v == 0 {
		return
	}
	if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
		overflow = true
	}
	return
}

func (_ checkOverflow) SignedInt(v uint64) (i int64, overflow bool) {
	//e.g. -127 to 128 for int8
	pos := (v >> 63) == 0
	ui2 := v & 0x7fffffffffffffff
	if pos {
		if ui2 > math.MaxInt64 {
			overflow = true
			return
		}
	} else {
		if ui2 > math.MaxInt64-1 {
			overflow = true
			return
		}
	}
	i = int64(v)
	return
}

// ------------------ SORT -----------------

func isNaN(f float64) bool { return f != f }

// -----------------------

type intSlice []int64
type uintSlice []uint64
type floatSlice []float64
type boolSlice []bool
type stringSlice []string
type bytesSlice [][]byte

func (p intSlice) Len() int           { return len(p) }
func (p intSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p intSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p uintSlice) Len() int           { return len(p) }
func (p uintSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p uintSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p floatSlice) Len() int { return len(p) }
func (p floatSlice) Less(i, j int) bool {
	return p[i] < p[j] || isNaN(p[i]) && !isNaN(p[j])
}
func (p floatSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }

func (p stringSlice) Len() int           { return len(p) }
func (p stringSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p stringSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p bytesSlice) Len() int           { return len(p) }
func (p bytesSlice) Less(i, j int) bool { return bytes.Compare(p[i], p[j]) == -1 }
func (p bytesSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p boolSlice) Len() int           { return len(p) }
func (p boolSlice) Less(i, j int) bool { return !p[i] && p[j] }
func (p boolSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

// ---------------------

type intRv struct {
	v int64
	r reflect.Value
}
type intRvSlice []intRv
type uintRv struct {
	v uint64
	r reflect.Value
}
type uintRvSlice []uintRv
type floatRv struct {
	v float64
	r reflect.Value
}
type floatRvSlice []floatRv
type boolRv struct {
	v bool
	r reflect.Value
}
type boolRvSlice []boolRv
type stringRv struct {
	v string
	r reflect.Value
}
type stringRvSlice []stringRv
type bytesRv struct {
	v []byte
	r reflect.Value
}
type bytesRvSlice []bytesRv

func (p intRvSlice) Len() int           { return len(p) }
func (p intRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
func (p intRvSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p uintRvSlice) Len() int           { return len(p) }
func (p uintRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
func (p uintRvSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p floatRvSlice) Len() int { return len(p) }
func (p floatRvSlice) Less(i, j int) bool {
	return p[i].v < p[j].v || isNaN(p[i].v) && !isNaN(p[j].v)
}
func (p floatRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }

func (p stringRvSlice) Len() int           { return len(p) }
func (p stringRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
func (p stringRvSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p bytesRvSlice) Len() int           { return len(p) }
func (p bytesRvSlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 }
func (p bytesRvSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p boolRvSlice) Len() int           { return len(p) }
func (p boolRvSlice) Less(i, j int) bool { return !p[i].v && p[j].v }
func (p boolRvSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

// -----------------

type bytesI struct {
	v []byte
	i interface{}
}

type bytesISlice []bytesI

func (p bytesISlice) Len() int           { return len(p) }
func (p bytesISlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 }
func (p bytesISlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

// -----------------

type set []uintptr

func (s *set) add(v uintptr) (exists bool) {
	// e.ci is always nil, or len >= 1
	// defer func() { fmt.Printf("$$$$$$$$$$$ cirRef Add: %v, exists: %v\n", v, exists) }()
	x := *s
	if x == nil {
		x = make([]uintptr, 1, 8)
		x[0] = v
		*s = x
		return
	}
	// typically, length will be 1. make this perform.
	if len(x) == 1 {
		if j := x[0]; j == 0 {
			x[0] = v
		} else if j == v {
			exists = true
		} else {
			x = append(x, v)
			*s = x
		}
		return
	}
	// check if it exists
	for _, j := range x {
		if j == v {
			exists = true
			return
		}
	}
	// try to replace a "deleted" slot
	for i, j := range x {
		if j == 0 {
			x[i] = v
			return
		}
	}
	// if unable to replace deleted slot, just append it.
	x = append(x, v)
	*s = x
	return
}

func (s *set) remove(v uintptr) (exists bool) {
	// defer func() { fmt.Printf("$$$$$$$$$$$ cirRef Rm: %v, exists: %v\n", v, exists) }()
	x := *s
	if len(x) == 0 {
		return
	}
	if len(x) == 1 {
		if x[0] == v {
			x[0] = 0
		}
		return
	}
	for i, j := range x {
		if j == v {
			exists = true
			x[i] = 0 // set it to 0, as way to delete it.
			// copy(x[i:], x[i+1:])
			// x = x[:len(x)-1]
			return
		}
	}
	return
}