aboutsummaryrefslogtreecommitdiffstats
path: root/kube2msb/src/vendor/k8s.io/kubernetes/pkg/api/resource/quantity.go
diff options
context:
space:
mode:
Diffstat (limited to 'kube2msb/src/vendor/k8s.io/kubernetes/pkg/api/resource/quantity.go')
-rw-r--r--kube2msb/src/vendor/k8s.io/kubernetes/pkg/api/resource/quantity.go777
1 files changed, 0 insertions, 777 deletions
diff --git a/kube2msb/src/vendor/k8s.io/kubernetes/pkg/api/resource/quantity.go b/kube2msb/src/vendor/k8s.io/kubernetes/pkg/api/resource/quantity.go
deleted file mode 100644
index 823dd5e..0000000
--- a/kube2msb/src/vendor/k8s.io/kubernetes/pkg/api/resource/quantity.go
+++ /dev/null
@@ -1,777 +0,0 @@
-/*
-Copyright 2014 The Kubernetes Authors.
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-
- http://www.apache.org/licenses/LICENSE-2.0
-
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-package resource
-
-import (
- "bytes"
- "errors"
- "fmt"
- "math/big"
- "regexp"
- "strconv"
- "strings"
-
- flag "github.com/spf13/pflag"
-
- inf "gopkg.in/inf.v0"
-)
-
-// Quantity is a fixed-point representation of a number.
-// It provides convenient marshaling/unmarshaling in JSON and YAML,
-// in addition to String() and Int64() accessors.
-//
-// The serialization format is:
-//
-// <quantity> ::= <signedNumber><suffix>
-// (Note that <suffix> may be empty, from the "" case in <decimalSI>.)
-// <digit> ::= 0 | 1 | ... | 9
-// <digits> ::= <digit> | <digit><digits>
-// <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits>
-// <sign> ::= "+" | "-"
-// <signedNumber> ::= <number> | <sign><number>
-// <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI>
-// <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei
-// (International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)
-// <decimalSI> ::= m | "" | k | M | G | T | P | E
-// (Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)
-// <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber>
-//
-// No matter which of the three exponent forms is used, no quantity may represent
-// a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal
-// places. Numbers larger or more precise will be capped or rounded up.
-// (E.g.: 0.1m will rounded up to 1m.)
-// This may be extended in the future if we require larger or smaller quantities.
-//
-// When a Quantity is parsed from a string, it will remember the type of suffix
-// it had, and will use the same type again when it is serialized.
-//
-// Before serializing, Quantity will be put in "canonical form".
-// This means that Exponent/suffix will be adjusted up or down (with a
-// corresponding increase or decrease in Mantissa) such that:
-// a. No precision is lost
-// b. No fractional digits will be emitted
-// c. The exponent (or suffix) is as large as possible.
-// The sign will be omitted unless the number is negative.
-//
-// Examples:
-// 1.5 will be serialized as "1500m"
-// 1.5Gi will be serialized as "1536Mi"
-//
-// NOTE: We reserve the right to amend this canonical format, perhaps to
-// allow 1.5 to be canonical.
-// TODO: Remove above disclaimer after all bikeshedding about format is over,
-// or after March 2015.
-//
-// Note that the quantity will NEVER be internally represented by a
-// floating point number. That is the whole point of this exercise.
-//
-// Non-canonical values will still parse as long as they are well formed,
-// but will be re-emitted in their canonical form. (So always use canonical
-// form, or don't diff.)
-//
-// This format is intended to make it difficult to use these numbers without
-// writing some sort of special handling code in the hopes that that will
-// cause implementors to also use a fixed point implementation.
-//
-// +protobuf=true
-// +protobuf.embed=string
-// +protobuf.options.marshal=false
-// +protobuf.options.(gogoproto.goproto_stringer)=false
-type Quantity struct {
- // i is the quantity in int64 scaled form, if d.Dec == nil
- i int64Amount
- // d is the quantity in inf.Dec form if d.Dec != nil
- d infDecAmount
- // s is the generated value of this quantity to avoid recalculation
- s string
-
- // Change Format at will. See the comment for Canonicalize for
- // more details.
- Format
-}
-
-// CanonicalValue allows a quantity amount to be converted to a string.
-type CanonicalValue interface {
- // AsCanonicalBytes returns a byte array representing the string representation
- // of the value mantissa and an int32 representing its exponent in base-10. Callers may
- // pass a byte slice to the method to avoid allocations.
- AsCanonicalBytes(out []byte) ([]byte, int32)
- // AsCanonicalBase1024Bytes returns a byte array representing the string representation
- // of the value mantissa and an int32 representing its exponent in base-1024. Callers
- // may pass a byte slice to the method to avoid allocations.
- AsCanonicalBase1024Bytes(out []byte) ([]byte, int32)
-}
-
-// Format lists the three possible formattings of a quantity.
-type Format string
-
-const (
- DecimalExponent = Format("DecimalExponent") // e.g., 12e6
- BinarySI = Format("BinarySI") // e.g., 12Mi (12 * 2^20)
- DecimalSI = Format("DecimalSI") // e.g., 12M (12 * 10^6)
-)
-
-// MustParse turns the given string into a quantity or panics; for tests
-// or others cases where you know the string is valid.
-func MustParse(str string) Quantity {
- q, err := ParseQuantity(str)
- if err != nil {
- panic(fmt.Errorf("cannot parse '%v': %v", str, err))
- }
- return q
-}
-
-const (
- // splitREString is used to separate a number from its suffix; as such,
- // this is overly permissive, but that's OK-- it will be checked later.
- splitREString = "^([+-]?[0-9.]+)([eEinumkKMGTP]*[-+]?[0-9]*)$"
-)
-
-var (
- // splitRE is used to get the various parts of a number.
- splitRE = regexp.MustCompile(splitREString)
-
- // Errors that could happen while parsing a string.
- ErrFormatWrong = errors.New("quantities must match the regular expression '" + splitREString + "'")
- ErrNumeric = errors.New("unable to parse numeric part of quantity")
- ErrSuffix = errors.New("unable to parse quantity's suffix")
-)
-
-// parseQuantityString is a fast scanner for quantity values.
-func parseQuantityString(str string) (positive bool, value, num, denom, suffix string, err error) {
- positive = true
- pos := 0
- end := len(str)
-
- // handle leading sign
- if pos < end {
- switch str[0] {
- case '-':
- positive = false
- pos++
- case '+':
- pos++
- }
- }
-
- // strip leading zeros
-Zeroes:
- for i := pos; ; i++ {
- if i >= end {
- num = "0"
- value = num
- return
- }
- switch str[i] {
- case '0':
- pos++
- default:
- break Zeroes
- }
- }
-
- // extract the numerator
-Num:
- for i := pos; ; i++ {
- if i >= end {
- num = str[pos:end]
- value = str[0:end]
- return
- }
- switch str[i] {
- case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
- default:
- num = str[pos:i]
- pos = i
- break Num
- }
- }
-
- // if we stripped all numerator positions, always return 0
- if len(num) == 0 {
- num = "0"
- }
-
- // handle a denominator
- if pos < end && str[pos] == '.' {
- pos++
- Denom:
- for i := pos; ; i++ {
- if i >= end {
- denom = str[pos:end]
- value = str[0:end]
- return
- }
- switch str[i] {
- case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
- default:
- denom = str[pos:i]
- pos = i
- break Denom
- }
- }
- // TODO: we currently allow 1.G, but we may not want to in the future.
- // if len(denom) == 0 {
- // err = ErrFormatWrong
- // return
- // }
- }
- value = str[0:pos]
-
- // grab the elements of the suffix
- suffixStart := pos
- for i := pos; ; i++ {
- if i >= end {
- suffix = str[suffixStart:end]
- return
- }
- if !strings.ContainsAny(str[i:i+1], "eEinumkKMGTP") {
- pos = i
- break
- }
- }
- if pos < end {
- switch str[pos] {
- case '-', '+':
- pos++
- }
- }
-Suffix:
- for i := pos; ; i++ {
- if i >= end {
- suffix = str[suffixStart:end]
- return
- }
- switch str[i] {
- case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
- default:
- break Suffix
- }
- }
- // we encountered a non decimal in the Suffix loop, but the last character
- // was not a valid exponent
- err = ErrFormatWrong
- return
-}
-
-// ParseQuantity turns str into a Quantity, or returns an error.
-func ParseQuantity(str string) (Quantity, error) {
- if len(str) == 0 {
- return Quantity{}, ErrFormatWrong
- }
- if str == "0" {
- return Quantity{Format: DecimalSI, s: str}, nil
- }
-
- positive, value, num, denom, suf, err := parseQuantityString(str)
- if err != nil {
- return Quantity{}, err
- }
-
- base, exponent, format, ok := quantitySuffixer.interpret(suffix(suf))
- if !ok {
- return Quantity{}, ErrSuffix
- }
-
- precision := int32(0)
- scale := int32(0)
- mantissa := int64(1)
- switch format {
- case DecimalExponent, DecimalSI:
- scale = exponent
- precision = maxInt64Factors - int32(len(num)+len(denom))
- case BinarySI:
- scale = 0
- switch {
- case exponent >= 0 && len(denom) == 0:
- // only handle positive binary numbers with the fast path
- mantissa = int64(int64(mantissa) << uint64(exponent))
- // 1Mi (2^20) has ~6 digits of decimal precision, so exponent*3/10 -1 is roughly the precision
- precision = 15 - int32(len(num)) - int32(float32(exponent)*3/10) - 1
- default:
- precision = -1
- }
- }
-
- if precision >= 0 {
- // if we have a denominator, shift the entire value to the left by the number of places in the
- // denominator
- scale -= int32(len(denom))
- if scale >= int32(Nano) {
- shifted := num + denom
-
- var value int64
- value, err := strconv.ParseInt(shifted, 10, 64)
- if err != nil {
- return Quantity{}, ErrNumeric
- }
- if result, ok := int64Multiply(value, int64(mantissa)); ok {
- if !positive {
- result = -result
- }
- // if the number is in canonical form, reuse the string
- switch format {
- case BinarySI:
- if exponent%10 == 0 && (value&0x07 != 0) {
- return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
- }
- default:
- if scale%3 == 0 && !strings.HasSuffix(shifted, "000") && shifted[0] != '0' {
- return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
- }
- }
- return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format}, nil
- }
- }
- }
-
- amount := new(inf.Dec)
- if _, ok := amount.SetString(value); !ok {
- return Quantity{}, ErrNumeric
- }
-
- // So that no one but us has to think about suffixes, remove it.
- if base == 10 {
- amount.SetScale(amount.Scale() + Scale(exponent).infScale())
- } else if base == 2 {
- // numericSuffix = 2 ** exponent
- numericSuffix := big.NewInt(1).Lsh(bigOne, uint(exponent))
- ub := amount.UnscaledBig()
- amount.SetUnscaledBig(ub.Mul(ub, numericSuffix))
- }
-
- // Cap at min/max bounds.
- sign := amount.Sign()
- if sign == -1 {
- amount.Neg(amount)
- }
-
- // This rounds non-zero values up to the minimum representable value, under the theory that
- // if you want some resources, you should get some resources, even if you asked for way too small
- // of an amount. Arguably, this should be inf.RoundHalfUp (normal rounding), but that would have
- // the side effect of rounding values < .5n to zero.
- if v, ok := amount.Unscaled(); v != int64(0) || !ok {
- amount.Round(amount, Nano.infScale(), inf.RoundUp)
- }
-
- // The max is just a simple cap.
- // TODO: this prevents accumulating quantities greater than int64, for instance quota across a cluster
- if format == BinarySI && amount.Cmp(maxAllowed.Dec) > 0 {
- amount.Set(maxAllowed.Dec)
- }
-
- if format == BinarySI && amount.Cmp(decOne) < 0 && amount.Cmp(decZero) > 0 {
- // This avoids rounding and hopefully confusion, too.
- format = DecimalSI
- }
- if sign == -1 {
- amount.Neg(amount)
- }
-
- return Quantity{d: infDecAmount{amount}, Format: format}, nil
-}
-
-// DeepCopy returns a deep-copy of the Quantity value. Note that the method
-// receiver is a value, so we can mutate it in-place and return it.
-func (q Quantity) DeepCopy() Quantity {
- if q.d.Dec != nil {
- tmp := &inf.Dec{}
- q.d.Dec = tmp.Set(q.d.Dec)
- }
- return q
-}
-
-// CanonicalizeBytes returns the canonical form of q and its suffix (see comment on Quantity).
-//
-// Note about BinarySI:
-// * If q.Format is set to BinarySI and q.Amount represents a non-zero value between
-// -1 and +1, it will be emitted as if q.Format were DecimalSI.
-// * Otherwise, if q.Format is set to BinarySI, frational parts of q.Amount will be
-// rounded up. (1.1i becomes 2i.)
-func (q *Quantity) CanonicalizeBytes(out []byte) (result, suffix []byte) {
- if q.IsZero() {
- return zeroBytes, nil
- }
-
- var rounded CanonicalValue
- format := q.Format
- switch format {
- case DecimalExponent, DecimalSI:
- case BinarySI:
- if q.CmpInt64(-1024) > 0 && q.CmpInt64(1024) < 0 {
- // This avoids rounding and hopefully confusion, too.
- format = DecimalSI
- } else {
- var exact bool
- if rounded, exact = q.AsScale(0); !exact {
- // Don't lose precision-- show as DecimalSI
- format = DecimalSI
- }
- }
- default:
- format = DecimalExponent
- }
-
- // TODO: If BinarySI formatting is requested but would cause rounding, upgrade to
- // one of the other formats.
- switch format {
- case DecimalExponent, DecimalSI:
- number, exponent := q.AsCanonicalBytes(out)
- suffix, _ := quantitySuffixer.constructBytes(10, exponent, format)
- return number, suffix
- default:
- // format must be BinarySI
- number, exponent := rounded.AsCanonicalBase1024Bytes(out)
- suffix, _ := quantitySuffixer.constructBytes(2, exponent*10, format)
- return number, suffix
- }
-}
-
-// AsInt64 returns a representation of the current value as an int64 if a fast conversion
-// is possible. If false is returned, callers must use the inf.Dec form of this quantity.
-func (q *Quantity) AsInt64() (int64, bool) {
- if q.d.Dec != nil {
- return 0, false
- }
- return q.i.AsInt64()
-}
-
-// ToDec promotes the quantity in place to use an inf.Dec representation and returns itself.
-func (q *Quantity) ToDec() *Quantity {
- if q.d.Dec == nil {
- q.d.Dec = q.i.AsDec()
- q.i = int64Amount{}
- }
- return q
-}
-
-// AsDec returns the quantity as represented by a scaled inf.Dec.
-func (q *Quantity) AsDec() *inf.Dec {
- if q.d.Dec != nil {
- return q.d.Dec
- }
- q.d.Dec = q.i.AsDec()
- q.i = int64Amount{}
- return q.d.Dec
-}
-
-// AsCanonicalBytes returns the canonical byte representation of this quantity as a mantissa
-// and base 10 exponent. The out byte slice may be passed to the method to avoid an extra
-// allocation.
-func (q *Quantity) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
- if q.d.Dec != nil {
- return q.d.AsCanonicalBytes(out)
- }
- return q.i.AsCanonicalBytes(out)
-}
-
-// IsZero returns true if the quantity is equal to zero.
-func (q *Quantity) IsZero() bool {
- if q.d.Dec != nil {
- return q.d.Dec.Sign() == 0
- }
- return q.i.value == 0
-}
-
-// Sign returns 0 if the quantity is zero, -1 if the quantity is less than zero, or 1 if the
-// quantity is greater than zero.
-func (q *Quantity) Sign() int {
- if q.d.Dec != nil {
- return q.d.Dec.Sign()
- }
- return q.i.Sign()
-}
-
-// AsScaled returns the current value, rounded up to the provided scale, and returns
-// false if the scale resulted in a loss of precision.
-func (q *Quantity) AsScale(scale Scale) (CanonicalValue, bool) {
- if q.d.Dec != nil {
- return q.d.AsScale(scale)
- }
- return q.i.AsScale(scale)
-}
-
-// RoundUp updates the quantity to the provided scale, ensuring that the value is at
-// least 1. False is returned if the rounding operation resulted in a loss of precision.
-// Negative numbers are rounded away from zero (-9 scale 1 rounds to -10).
-func (q *Quantity) RoundUp(scale Scale) bool {
- if q.d.Dec != nil {
- q.s = ""
- d, exact := q.d.AsScale(scale)
- q.d = d
- return exact
- }
- // avoid clearing the string value if we have already calculated it
- if q.i.scale >= scale {
- return true
- }
- q.s = ""
- i, exact := q.i.AsScale(scale)
- q.i = i
- return exact
-}
-
-// Add adds the provide y quantity to the current value. If the current value is zero,
-// the format of the quantity will be updated to the format of y.
-func (q *Quantity) Add(y Quantity) {
- q.s = ""
- if q.d.Dec == nil && y.d.Dec == nil {
- if q.i.value == 0 {
- q.Format = y.Format
- }
- if q.i.Add(y.i) {
- return
- }
- } else if q.IsZero() {
- q.Format = y.Format
- }
- q.ToDec().d.Dec.Add(q.d.Dec, y.AsDec())
-}
-
-// Sub subtracts the provided quantity from the current value in place. If the current
-// value is zero, the format of the quantity will be updated to the format of y.
-func (q *Quantity) Sub(y Quantity) {
- q.s = ""
- if q.IsZero() {
- q.Format = y.Format
- }
- if q.d.Dec == nil && y.d.Dec == nil && q.i.Sub(y.i) {
- return
- }
- q.ToDec().d.Dec.Sub(q.d.Dec, y.AsDec())
-}
-
-// Cmp returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the
-// quantity is greater than y.
-func (q *Quantity) Cmp(y Quantity) int {
- if q.d.Dec == nil && y.d.Dec == nil {
- return q.i.Cmp(y.i)
- }
- return q.AsDec().Cmp(y.AsDec())
-}
-
-// CmpInt64 returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the
-// quantity is greater than y.
-func (q *Quantity) CmpInt64(y int64) int {
- if q.d.Dec != nil {
- return q.d.Dec.Cmp(inf.NewDec(y, inf.Scale(0)))
- }
- return q.i.Cmp(int64Amount{value: y})
-}
-
-// Neg sets quantity to be the negative value of itself.
-func (q *Quantity) Neg() {
- q.s = ""
- if q.d.Dec == nil {
- q.i.value = -q.i.value
- return
- }
- q.d.Dec.Neg(q.d.Dec)
-}
-
-// int64QuantityExpectedBytes is the expected width in bytes of the canonical string representation
-// of most Quantity values.
-const int64QuantityExpectedBytes = 18
-
-// String formats the Quantity as a string, caching the result if not calculated.
-// String is an expensive operation and caching this result significantly reduces the cost of
-// normal parse / marshal operations on Quantity.
-func (q *Quantity) String() string {
- if len(q.s) == 0 {
- result := make([]byte, 0, int64QuantityExpectedBytes)
- number, suffix := q.CanonicalizeBytes(result)
- number = append(number, suffix...)
- q.s = string(number)
- }
- return q.s
-}
-
-// MarshalJSON implements the json.Marshaller interface.
-func (q Quantity) MarshalJSON() ([]byte, error) {
- if len(q.s) > 0 {
- out := make([]byte, len(q.s)+2)
- out[0], out[len(out)-1] = '"', '"'
- copy(out[1:], q.s)
- return out, nil
- }
- result := make([]byte, int64QuantityExpectedBytes, int64QuantityExpectedBytes)
- result[0] = '"'
- number, suffix := q.CanonicalizeBytes(result[1:1])
- // if the same slice was returned to us that we passed in, avoid another allocation by copying number into
- // the source slice and returning that
- if len(number) > 0 && &number[0] == &result[1] && (len(number)+len(suffix)+2) <= int64QuantityExpectedBytes {
- number = append(number, suffix...)
- number = append(number, '"')
- return result[:1+len(number)], nil
- }
- // if CanonicalizeBytes needed more space than our slice provided, we may need to allocate again so use
- // append
- result = result[:1]
- result = append(result, number...)
- result = append(result, suffix...)
- result = append(result, '"')
- return result, nil
-}
-
-// UnmarshalJSON implements the json.Unmarshaller interface.
-// TODO: Remove support for leading/trailing whitespace
-func (q *Quantity) UnmarshalJSON(value []byte) error {
- l := len(value)
- if l == 4 && bytes.Equal(value, []byte("null")) {
- q.d.Dec = nil
- q.i = int64Amount{}
- return nil
- }
- if l >= 2 && value[0] == '"' && value[l-1] == '"' {
- value = value[1 : l-1]
- }
-
- parsed, err := ParseQuantity(strings.TrimSpace(string(value)))
- if err != nil {
- return err
- }
-
- // This copy is safe because parsed will not be referred to again.
- *q = parsed
- return nil
-}
-
-// NewQuantity returns a new Quantity representing the given
-// value in the given format.
-func NewQuantity(value int64, format Format) *Quantity {
- return &Quantity{
- i: int64Amount{value: value},
- Format: format,
- }
-}
-
-// NewMilliQuantity returns a new Quantity representing the given
-// value * 1/1000 in the given format. Note that BinarySI formatting
-// will round fractional values, and will be changed to DecimalSI for
-// values x where (-1 < x < 1) && (x != 0).
-func NewMilliQuantity(value int64, format Format) *Quantity {
- return &Quantity{
- i: int64Amount{value: value, scale: -3},
- Format: format,
- }
-}
-
-// NewScaledQuantity returns a new Quantity representing the given
-// value * 10^scale in DecimalSI format.
-func NewScaledQuantity(value int64, scale Scale) *Quantity {
- return &Quantity{
- i: int64Amount{value: value, scale: scale},
- Format: DecimalSI,
- }
-}
-
-// Value returns the value of q; any fractional part will be lost.
-func (q *Quantity) Value() int64 {
- return q.ScaledValue(0)
-}
-
-// MilliValue returns the value of ceil(q * 1000); this could overflow an int64;
-// if that's a concern, call Value() first to verify the number is small enough.
-func (q *Quantity) MilliValue() int64 {
- return q.ScaledValue(Milli)
-}
-
-// ScaledValue returns the value of ceil(q * 10^scale); this could overflow an int64.
-// To detect overflow, call Value() first and verify the expected magnitude.
-func (q *Quantity) ScaledValue(scale Scale) int64 {
- if q.d.Dec == nil {
- i, _ := q.i.AsScaledInt64(scale)
- return i
- }
- dec := q.d.Dec
- return scaledValue(dec.UnscaledBig(), int(dec.Scale()), int(scale.infScale()))
-}
-
-// Set sets q's value to be value.
-func (q *Quantity) Set(value int64) {
- q.SetScaled(value, 0)
-}
-
-// SetMilli sets q's value to be value * 1/1000.
-func (q *Quantity) SetMilli(value int64) {
- q.SetScaled(value, Milli)
-}
-
-// SetScaled sets q's value to be value * 10^scale
-func (q *Quantity) SetScaled(value int64, scale Scale) {
- q.s = ""
- q.d.Dec = nil
- q.i = int64Amount{value: value, scale: scale}
-}
-
-// Copy is a convenience function that makes a deep copy for you. Non-deep
-// copies of quantities share pointers and you will regret that.
-func (q *Quantity) Copy() *Quantity {
- if q.d.Dec == nil {
- return &Quantity{
- s: q.s,
- i: q.i,
- Format: q.Format,
- }
- }
- tmp := &inf.Dec{}
- return &Quantity{
- s: q.s,
- d: infDecAmount{tmp.Set(q.d.Dec)},
- Format: q.Format,
- }
-}
-
-// qFlag is a helper type for the Flag function
-type qFlag struct {
- dest *Quantity
-}
-
-// Sets the value of the internal Quantity. (used by flag & pflag)
-func (qf qFlag) Set(val string) error {
- q, err := ParseQuantity(val)
- if err != nil {
- return err
- }
- // This copy is OK because q will not be referenced again.
- *qf.dest = q
- return nil
-}
-
-// Converts the value of the internal Quantity to a string. (used by flag & pflag)
-func (qf qFlag) String() string {
- return qf.dest.String()
-}
-
-// States the type of flag this is (Quantity). (used by pflag)
-func (qf qFlag) Type() string {
- return "quantity"
-}
-
-// QuantityFlag is a helper that makes a quantity flag (using standard flag package).
-// Will panic if defaultValue is not a valid quantity.
-func QuantityFlag(flagName, defaultValue, description string) *Quantity {
- q := MustParse(defaultValue)
- flag.Var(NewQuantityFlagValue(&q), flagName, description)
- return &q
-}
-
-// NewQuantityFlagValue returns an object that can be used to back a flag,
-// pointing at the given Quantity variable.
-func NewQuantityFlagValue(q *Quantity) flag.Value {
- return qFlag{q}
-}