summaryrefslogtreecommitdiffstats
path: root/docs
diff options
context:
space:
mode:
authorRich Bennett <rb2745@att.com>2019-05-31 10:39:43 +0000
committerGerrit Code Review <gerrit@onap.org>2019-05-31 10:39:43 +0000
commit6202429d034b0008bac06b75c9009a880b20bd3a (patch)
tree398ad0ad26ed98b8ae7c1f727778bfd0d27f4d41 /docs
parentb504eb993cfd71d128ecc32727d9d1a485d572fb (diff)
parent2fe7abfd08670cf56982fad768f904fbb2003d14 (diff)
Merge "Update Architecture section"
Diffstat (limited to 'docs')
-rw-r--r--docs/guides/onap-developer/architecture/media/ONAP-toplevel.pngbin383760 -> 481082 bytes
-rw-r--r--docs/guides/onap-developer/architecture/onap-architecture.rst757
2 files changed, 389 insertions, 368 deletions
diff --git a/docs/guides/onap-developer/architecture/media/ONAP-toplevel.png b/docs/guides/onap-developer/architecture/media/ONAP-toplevel.png
index 62a9d47e1..1c144fc06 100644
--- a/docs/guides/onap-developer/architecture/media/ONAP-toplevel.png
+++ b/docs/guides/onap-developer/architecture/media/ONAP-toplevel.png
Binary files differ
diff --git a/docs/guides/onap-developer/architecture/onap-architecture.rst b/docs/guides/onap-developer/architecture/onap-architecture.rst
index 35156b227..ca0399ac5 100644
--- a/docs/guides/onap-developer/architecture/onap-architecture.rst
+++ b/docs/guides/onap-developer/architecture/onap-architecture.rst
@@ -2,66 +2,68 @@
.. 4.0 International License.
.. http://creativecommons.org/licenses/by/4.0
.. Copyright 2017-2018 Huawei Technologies Co., Ltd.
+.. Copyright 2019 ONAP Contributors
.. _ONAP-architecture:
-1. Introduction
-===============
+Introduction
+============
-The ONAP project addresses the rising need for a common automation platform
-for telecommunication, cable, and cloud service providers—and their solution
+The ONAP project addresses the rising need for a common automation platform for
+telecommunication, cable, and cloud service providers—and their solution
providers—to deliver differentiated network services on demand, profitably and
competitively, while leveraging existing investments.
-Prior to ONAP, operators of telecommunication networks have been challenged to
-keep up with the scale and cost of manual changes required to implement new
-service offerings, from installing new data center equipment to, in some cases,
-upgrading on-premises customer equipment. Many are seeking to exploit SDN and
-NFV to improve service velocity, simplify equipment interoperability and
-integration, and reduce overall CapEx and OpEx costs. In addition, the current,
-highly fragmented management landscape makes it difficult to monitor and
-guarantee service-level agreements (SLAs). These challenges are still very real
-now as ONAP creates its third release.
+The challenge that ONAP meets is to help operators of telecommunication
+networks to keep up with the scale and cost of manual changes required to
+implement new service offerings, from installing new data center equipment to,
+in some cases, upgrading on-premises customer equipment. Many are seeking to
+exploit SDN and NFV to improve service velocity, simplify equipment
+interoperability and integration, and to reduce overall CapEx and OpEx costs.
+In addition, the current, highly fragmented management landscape makes it
+difficult to monitor and guarantee service-level agreements (SLAs). These
+challenges are still very real now as ONAP creates its fourth release.
ONAP is addressing these challenges by developing global and massive scale
(multi-site and multi-VIM) automation capabilities for both physical and
virtual network elements. It facilitates service agility by supporting data
-models for rapid service and resource deployment, and providing a common set of
-Northbound REST APIs that are open and interoperable, and by supporting model
-driven interfaces to the networks. ONAP’s modular and layered nature improves
-interoperability and simplifies integration, allowing it to support multiple
-VNF environments by integrating with multiple VIMs, VNFMs, SDN Controllers, and
-even legacy equipment. ONAP’s consolidated VNF requirements publication will
-enable commercial development of ONAP-compliant VNFs. This approach allows
-network and cloud operators to optimize their physical and virtual
-infrastructure for cost and performance; at the same time, ONAP’s use of
-standard models reduces integration and deployment costs of heterogeneous
-equipment, while minimizing management fragmentation.
-
-The ONAP platform allows end user organizations and their network/cloud
+models for rapid service and resource deployment and providing a common set of
+northbound REST APIs that are open and interoperable, and by supporting
+model-driven interfaces to the networks. ONAP’s modular and layered nature
+improves interoperability and simplifies integration, allowing it to support
+multiple VNF environments by integrating with multiple VIMs, VNFMs,
+SDN Controllers, as well as legacy equipment (PNF). ONAP’s consolidated xNF
+requirements publication enables commercial development of ONAP-compliant xNFs.
+This approach allows network and cloud operators to optimize their physical
+and virtual infrastructure for cost and performance; at the same time, ONAP’s
+use of standard models reduces integration and deployment costs of
+heterogeneous equipment. All this is achieved while minimizing management
+fragmentation.
+
+The ONAP platform allows end-user organizations and their network/cloud
providers to collaboratively instantiate network elements and services in a
-dynamic, closed control loop process, with real-time response to actionable
-events. In order to design, engineer, plan, bill and assure these dynamic
-services, there are three major requirements:
-
-- A robust design framework that allows specification of the service in all
- aspects – modeling the resources and relationships that make up the service,
- specifying the policy rules that guide the service behavior, specifying the
- applications, analytics and closed control loop events needed for the
- elastic management of the service.
-
-- An orchestration and control framework (Service Orchestrator and
- Controllers) that is recipe/policy-driven to provide automated instantiation
- of the service when needed and managing service demands in an elastic
- manner.
-
-- An analytic framework that closely monitors the service behavior during the
- service lifecycle based on the specified design, analytics and policies to
- enable response as required from the control framework, to deal with
- situations ranging from those that require healing to those that require
- scaling of the resources to elastically adjust to demand variations.
-
-To achieve this, ONAP decouples the details of specific services and
+rapid and dynamic way, together with supporting a closed control loop process
+that supports real-time response to actionable events. In order to design,
+engineer, plan, bill and assure these dynamic services, there are three major
+requirements:
+
+- A robust design framework that allows the specification of the service in
+ all aspects – modeling the resources and relationships that make up the
+ service, specifying the policy rules that guide the service behavior,
+ specifying the applications, analytics and closed control loop events needed
+ for the elastic management of the service
+
+- An orchestration and control framework (Service Orchestrator and Controllers
+ ) that is recipe/ policy-driven to provide an automated instantiation of the
+ service when needed and managing service demands in an elastic manner
+
+- An analytic framework that closely monitors the service behavior during the
+ service lifecycle based on the specified design, analytics and policies to
+ enable response as required from the control framework, to deal with
+ situations ranging from those that require healing to those that require
+ scaling of the resources to elastically adjust to demand variations.
+
+To achieve this, ONAP decouples the details of specific services and supporting
technologies from the common information models, core orchestration platform,
and generic management engines (for discovery, provisioning, assurance etc.).
Furthermore, it marries the speed and style of a DevOps/NetOps approach with
@@ -72,72 +74,76 @@ in stark contrast to traditional OSS/Management software platform
architectures, which hardcoded services and technologies, and required lengthy
software development and integration cycles to incorporate changes.
-The ONAP Platform enables product/service independent capabilities for design,
+The ONAP Platform enables service/resource independent capabilities for design,
creation and lifecycle management, in accordance with the following
foundational principles:
-- Ability to dynamically introduce full service lifecycle orchestration
- (design, provisioning and operation) and service API for new services and
- technologies without the need for new platform software releases or without
- affecting operations for the existing services
-- Carrier-grade scalability including horizontal scaling (linear scale-out)
- and distribution to support large number of services and large networks
-- Metadata-driven and policy-driven architecture to ensure flexible and
- automated ways in which capabilities are used and delivered
-- The architecture shall enable sourcing best-in-class components
-- Common capabilities are ‘developed’ once and ‘used’ many times
-- Core capabilities shall support many diverse services and infrastructures
-- The architecture shall support elastic scaling as needs grow or shrink
-
-2. ONAP Architecture
-====================
-
-The platform provides the common functions (e.g., data collection, control
-loops, meta-data recipe creation, policy/recipe distribution, etc.) necessary
-to construct specific behaviors.
-
-To create a service or operational capability, it is necessary to develop
-service/operations-specific service definitions, data collection, analytics,
-and policies (including recipes for corrective/remedial action) using the ONAP
+- Ability to dynamically introduce full service lifecycle orchestration (design
+ ,provisioning and operation) and service API for new services and
+ technologies without the need for new platform software releases or without
+ affecting operations for the existing services
+- Carrier-grade scalability including horizontal scaling (linear scale-out) and
+ distribution to support a large number of services and large networks
+- Metadata-driven and policy-driven architecture to ensure flexible and
+ automated ways in which capabilities are used and delivered
+- The architecture shall enable sourcing best-in-class components
+- Common capabilities are ‘developed’ once and ‘used’ many times
+- Core capabilities shall support many diverse services and infrastructures
+
+Further, ONAP comes with a functional architecture with component definitions
+and interfaces, which provides a force of industry alignment in addition to
+the open source code.
+
+ONAP Architecture
+=================
+The platform provides common functions such as data collection, control loops,
+meta-data recipe creation, and policy/recipe distribution that are necessary to
+construct specific behaviors.
+
+To create a service or operational capability ONAP supports service/
+operations-specific service definitions, data collection, analytics, and
+policies (including recipes for corrective/remedial action) using the ONAP
Design Framework Portal.
-Figure 1 provides a high-level view of the ONAP architecture and
+Figure 1 provides a high-level view of the ONAP architecture with its
microservices-based platform components.
|image1|
-**Figure 1: ONAP Platform architecture (Casablanca Release)**
+**Figure 1: ONAP Platform Architecture (Dublin Release)**
Figure 2 below, provides a simplified functional view of the architecture,
which highlights the role of a few key components:
-1. Design time environment for onboarding services and resources into ONAP and
+#. Design time environment for onboarding services and resources into ONAP and
designing required services.
-2. External API provides northbound interoperability for the ONAP Platform and
+#. External API provides northbound interoperability for the ONAP Platform and
Multi-VIM/Cloud provides cloud interoperability for the ONAP workloads.
-3. OOM provides the ability to manage cloud-native installation and deployments
- to Kubernetes-managed cloud environments.
-4. ONAP Common Services manages complex and optimized topologies. MUSIC allows
- ONAP to scale to multi-site environments to support global scale
+#. OOM provides the ability to manage cloud-native installation and
+ deployments to Kubernetes-managed cloud environments.
+#. ONAP Shared Services provides shared capabilities for ONAP modules. MUSIC
+ allows ONAP to scale to multi-site environments to support global scale
infrastructure requirements. The ONAP Optimization Framework (OOF) provides
a declarative, policy-driven approach for creating and running optimization
applications like Homing/Placement, and Change Management Scheduling
- Optimization.
-5. Information Model and framework utilities continue to evolve to harmonize
+ Optimization. Logging provides centralized logging capabilities, Audit
+ (POMBA) provides capabilities to understand orchestration actions.
+#. ONAP shared utilities provide utilities for the support of the ONAP
+ components.
+#. Information Model and framework utilities continue to evolve to harmonize
the topology, workflow, and policy models from a number of SDOs including
- ETSI NFV MANO, TM Forum SID, ONF Core, OASIS TOSCA, IETF and MEF.
+ ETSI NFV MANO, TM Forum SID, ONF Core, OASIS TOSCA, IETF, and MEF.
|image2|
**Figure 2. Functional view of the ONAP architecture**
-The Casablanca release has a number of important new features in the areas of
+The Dublin release has a number of important new features in the areas of
design time and runtime, ONAP installation, and S3P.
-Design time: The Service Design and Creation (SDC) project in ONAP has two new
-dashboards—DCAE design studio, SO Workflow Designer—to help designers, product
-managers, TechOps, and VNF owners create artifacts in one unified design
-palette.
+Design time: Dublin has evolved the controller design studio, as part of the
+controller framework, which enables a model driven approach for how an ONAP
+controller controls the network resources.
Runtime: Service Orchestration (SO) and controllers have new functionality to
support physical network functions (PNFs), reboot, traffic migration, expanded
@@ -148,65 +154,60 @@ functionality, increase performance and availability, and unlock new edge
automation and 5G use cases. With support for ETSI NFV-SOL003, the introduction
of an ETSI compliant VNFM is simplified.
-In the area of monitoring, analytics, and service assurance, ONAP has early
-support for the Linux Foundation PNDA project in DCAE as a compliment to CDAP.
-Next, the data collection framework can now collect real-time messages through
-a high-volume collector, handle PNFs, and support SNMP and bulk performance
-management data files. The Policy project supports a new policy engine as well
-as the new Casablanca blueprints and can distribute policies through policy
-design capabilities in SDC, simplifying the design process. Next, the Holmes
-alarm correlation engine features a new GUI and provides richer functionality
-through scripting, again simplifying how rapidly alarm correlation rules can be
-developed.
-
-Moreover, there are new features in A&AI to support audit capabilities by
-providing historical data. ONAP northbound API continues to align better with
-TMForum (around ServiceOrder) and MEF APIs (around Legato and Interlude APIs)
-to simplify integration with OSS/BSS. The VID and UUI operations GUI projects
-can support a larger range of lifecycle management actions through a simple
-point and click interface allowing operators to perform more tasks with ease.
-Furthermore, The CLAMP project offers a new dashboard to view DMaaP and other
-events during design and runtime to ease the debugging of control-loop
-automation. ONAP has experimentally introduced ISTIO in certain components to
-progress the introduction of Service Mesh.
+To facilitate VNF vendor integration, ONAP introduced some mapper components
+that translate specific events (SNMP traps, telemetry, 3 GPP PM) towards ONAP
+VES standardized events.
+
+The Policy project supports multiple policy engines and can distribute policies
+through policy design capabilities in SDC, simplifying the design process.
+Next, the Holmes alarm correlation engine continues to support a GUI
+functionality via scripting to simplify how rapidly alarm correlation rules can
+be developed.
+
+ONAP northbound API continues to align better with TM Forum APIs (Service
+Catalog, Service Inventory, Service Order and Hub API) and MEF APIs (around
+Legato and Interlude APIs) to simplify integration with OSS/BSS. The VID and
+UUI operations GUI projects can support a larger range of lifecycle management
+actions through a simple point and click interface allowing operators to
+perform more tasks with ease. Furthermore, The CLAMP project supports a
+dashboard to view DMaaP and other events during design and runtime to ease the
+debugging of control-loop automation. ONAP has experimentally introduced ISTIO
+in certain components to progress the introduction of Service Mesh.
ONAP installation: The ONAP Operations Manager (OOM) continues to make progress
in streamlining ONAP installation by using Kubernetes (Docker and Helm Chart
-technologies). In Casablanca, OOM supports pluggable persistent storage
-including GlusterFS, providing users with more storage options. In a multi-node
-deployment, OOM allows more control on the placement of services based on
-available resources or node selectors. Finally, OOM now supports backup/restore
-of an entire k8s deployment thus introducing data protection.
-
-Casablanca has introduced the controller design studio, as part of the
-controller framework, which enables a model driven approach for how an ONAP
-controller controls the network resources.
-
-Deployability: Casablanca continued the 7 Dimensions momentum (Stability,
-Security, Scalability, Performance; and Resilience, Manageability, and
-Usability) from the prior to the Beijing release. A new logging project
-initiative called Post Orchestration Model Based Audit (POMBA), can check for
-deviations between design and ops environments thus increasing network service
-reliability. Numerous other projects ranging from Logging, SO, VF-C, A&AI,
-Portal, Policy, CLAMP and MSB have a number of improvements in the areas of
-performance, availability, logging, move to a cloud native architecture,
-authentication, stability, security, and code quality. Finally, versions of
-OpenDaylight and Kafka that are integrated in ONAP were upgraded to the Oxygen
-and v0.11 releases providing new capabilities such as P4 and data routing
-respectively.
-
-3. Microservices Support
-========================
-
+technologies). OOM supports pluggable persistent storage including GlusterFS,
+providing users with more storage options. In a multi-node deployment, OOM
+allows more control on the placement of services based on available resources
+or node selectors. Finally, OOM now supports backup/restore of an entire k8s
+deployment thus introducing data protection.
+
+Deployability: Dublin continued the 7 Dimensions momentum (Stability, Security,
+Scalability, Performance; and Resilience, Manageability, and Usability) from
+the prior to the Beijing release. A new logging project initiative called Post
+Orchestration Model Based Audit (POMBA), can check for deviations between
+design and ops environments thus increasing network service reliability.
+Numerous other projects ranging from Logging, SO, VF-C, A&AI, Portal, Policy,
+CLAMP and MSB have a number of improvements in the areas of performance,
+availability, logging, move to a cloud-native architecture, authentication,
+stability, security, and code quality. Finally, versions of OpenDaylight and
+Kafka that are integrated into ONAP were upgraded to the Oxygen and v0.11
+releases providing new capabilities such as P4 and data routing respectively.
+
+Microservices Support
+=====================
As a cloud-native application that consists of numerous services, ONAP requires
-sophisticated initial deployment as well as post-deployment management.
+sophisticated initial deployment as well as post- deployment management.
The ONAP deployment methodology needs to be flexible enough to suit the
different scenarios and purposes for various operator environments. Users may
also want to select a portion of the ONAP components to integrate into their
own systems. And the platform needs to be highly reliable, scalable, secure and
easy to manage. To achieve all these goals, ONAP is designed as a
-microservices-based system, with all components released as Docker containers.
+microservices-based system, with all components released as Docker containers
+following best practice building rules to optimize their image size. To reduce
+the ONAP footprint, a first effort to use shared data base have been initiated
+with a Cassandra and mariadb-galera clusters.
The ONAP Operations Manager (OOM) is responsible for orchestrating the
end-to-end lifecycle management and monitoring of ONAP components. OOM uses
@@ -217,31 +218,33 @@ enhancements to the components it manages.
OOM is the lifecycle manager of the ONAP platform and uses the Kubernetes
container management system and Consul to provide the following functionality:
-1. Deployment - with built-in component dependency management (including
+#. Deployment - with built-in component dependency management (including
multiple clusters, federated deployments across sites, and anti-affinity
rules)
-2. Configuration - unified configuration across all ONAP components
-3. Monitoring - real-time health monitoring feeding to a Consul GUI and
+#. Configuration - unified configuration across all ONAP components
+#. Monitoring - real-time health monitoring feeding to a Consul GUI and
Kubernetes
-4. Restart - failed ONAP components are restarted automatically
-5. Clustering and Scaling - cluster ONAP services to enable seamless scaling
-6. Upgrade - change out containers or configuration with little or no service
+#. Restart - failed ONAP components are restarted automatically
+#. Clustering and Scaling - cluster ONAP services to enable seamless scaling
+#. Upgrade - change out containers or configuration with little or no service
impact
-7. Deletion - clean up individual containers or entire deployments
+#. Deletion - clean up individual containers or entire deployments
OOM supports a wide variety of cloud infrastructures to suit your individual
requirements.
Microservices Bus (MSB) provides fundamental microservices supports including
-service registration/discovery, external API gateway, internal API gateway,
-client software development kit (SDK), and Swagger SDK. MSB supports both
-OpenStack (Heat) and bare metal deployment. When integrating with OOM, MSB has
-a Kube2MSB registrar which can grasp services information from k8s metafile and
-automatically register the services for ONAP components.
+service registration/ discovery, external API gateway, internal API gateway,
+client software development kit (SDK), and Swagger SDK. When integrating with
+OOM, MSB has a Kube2MSB registrar which can grasp services information from k8s
+metafile and automatically register the services for ONAP components.
-4. Portal
-=========
+In the spirit of leveraging the microservice capabilities, further steps
+towards increased modularity have been taken in the Dublin release. Service
+Orchestrator (SO) and the controllers have increased its level of modularity.
+Portal
+======
ONAP delivers a single, consistent user experience to both design time and
runtime environments, based on the user’s role. Role changes are configured
within a single ONAP instance.
@@ -251,7 +254,7 @@ design, analytics and operational control/administration functions via a
shared, role-based menu or dashboard. The portal architecture provides
web-based capabilities such as application onboarding and management,
centralized access management through the Authentication and Authorization
-Framework, and dashboards, as well as hosted application widgets.
+Framework (AAF), and dashboards, as well as hosted application widgets.
The portal provides an SDK to enable multiple development teams to adhere to
consistent UI development requirements by taking advantage of built-in
@@ -263,41 +266,45 @@ experts to continually define/redefine new collection, analytics, and policies
(including recipes for corrective/remedial action) using the ONAP Design
Framework Portal.
-5. Design-time Framework
-========================
-
+Design Time Framework
+=====================
The design time framework is a comprehensive development environment with
-tools, techniques, and repositories for defining/describing resources,
+tools, techniques, and repositories for defining/ describing resources,
services, and products.
The design time framework facilitates reuse of models, further improving
-efficiency as more and more models become available. Resources, services and
-their management and control functions can all be modeled using a common set
-of specifications and policies (e.g., rule sets) for controlling behavior and
-process execution. Process specifications automatically sequence instantiation,
-delivery and lifecycle management for resources, services, products and the
-ONAP platform components themselves. Certain process specifications (i.e.,
-‘recipes’) and policies are geographically distributed to optimize performance
-and maximize autonomous behavior in federated cloud environments.
+efficiency as more and more models become available. Resources, services,
+products, and their management and control functions can all be modeled using
+a common set of specifications and policies (e.g., rule sets) for controlling
+behavior and process execution. Process specifications automatically sequence
+instantiation, delivery and lifecycle management for resources, services,
+products and the ONAP platform components themselves. Certain process
+specifications (i.e., ‘recipes’) and policies are geographically distributed
+to optimize performance and maximize autonomous behavior in federated cloud
+environments.
Service Design and Creation (SDC) provides tools, techniques, and repositories
to define/simulate/certify system assets as well as their associated processes
-and policies. Each asset is categorized into one of two asset groups: Resource
-or Services.
+and policies. Each asset is categorized into one of four asset groups:
+Resource, Services, Products, or Offers. SDC also supports TOSCA1.3 List type
+definition in Dublin release which provides the ability to design complicated
+service descriptor.
+
The SDC environment supports diverse users via common services and utilities.
Using the design studio, product and service designers onboard/extend/retire
-resources and services. Operations, Engineers, Customer Experience Managers,
-and Security Experts create workflows, policies and methods to implement Closed
-control Loop Automation/Control and manage elastic scalability.
+resources, services and products. Operations, Engineers, Customer Experience
+Managers, and Security Experts create workflows, policies and methods to
+implement Closed control Loop Automation/Control and manage elastic
+scalability.
To support and encourage a healthy VNF ecosystem, ONAP provides a set of VNF
packaging and validation tools in the VNF Supplier API and Software Development
Kit (VNF SDK) and VNF Validation Program (VVP) components. Vendors can
integrate these tools in their CI/CD environments to package VNFs and upload
them to the validation engine. Once tested, the VNFs can be onboarded through
-SDC. In addition, the testing capability of VNFSDK is being utilized at the LFN
-Compliance Verification Program to work towards ensuring a highly consistent
-approach to VNF verification.
+SDC. In addition, the testing capability of VNFSDK is being utilized at the
+LFN Compliance Verification Program to work towards ensuring a highly
+consistent approach to VNF verification.
The Policy Creation component deals with policies; these are rules, conditions,
requirements, constraints, attributes, or needs that must be provided,
@@ -309,50 +316,43 @@ of the evaluated policies appropriate to the conditions).
Policy allows rapid modification through easily updating rules, thus updating
technical behaviors of components in which those policies are used, without
-requiring rewrites of their software code. Policy permits simpler management /
-control of complex mechanisms via abstraction.
-
-The Closed Loop Automation Management Platform (CLAMP) provides a platform for
-managing control loops. CLAMP is used to manage a closed control loop,
-configure it with specific parameters for a particular network service, then
-deploy and decommission it. Once deployed, a user can also update the loop with
-new parameters during runtime, as well as suspend and restart it.
-
-6. Runtime Framework
-====================
+requiring rewrites of their software code. Policy permits simpler management
+/ control of complex mechanisms via abstraction.
+Runtime Framework
+=================
The runtime execution framework executes the rules and policies distributed by
the design and creation environment.
This allows for the distribution of policy enforcement and templates among
-various ONAP modules such as the Service Orchestrator (SO), Controllers, Data
-Collection, Analytics and Events (DCAE), Active and Available Inventory (A&AI),
-and a Security Framework. These components use common services that support
-logging, access control, Multi-Site State Coordination (MUSIC), which allow the
-platform to register and manage state across multi-site deployments. The
-External API provides access for third-party frameworks such as MEF, TM Forum
-and potentially others, to facilitate interactions between operator BSS and
-relevant ONAP components. The logging services also includes event based
-analysis capabilities to support post orchestration consistency analysis.
+various ONAP modules such as the Service Orchestrator (SO), Controllers,
+Data Collection, Analytics and Events (DCAE), Active and Available Inventory
+(A&AI), and a Security Framework. These components use common services that
+support logging, access control, Multi-Site State Coordination (MUSIC), which
+allow the platform to register and manage state across multi-site deployments.
+The External API provides access for third-party frameworks such as MEF,
+TM Forum and potentially others, to facilitate interactions between operator
+BSS and relevant ONAP components. The logging services also includes
+event-based analysis capabilities to support post orchestration consistency
+analysis.
Orchestration
-------------
-
The Service Orchestrator (SO) component executes the specified processes by
automating sequences of activities, tasks, rules and policies needed for
on-demand creation, modification or removal of network, application or
-infrastructure services and resources. The SO provides orchestration at a very
-high level, with an end-to-end view of the infrastructure, network, and
-applications.
-
-The External API Northbound Interface component provides a standards-based
-interface between the BSS and various ONAP components, including Service
-Orchestrator, A&AI, and SDC. This provides an abstracted view of the platform
-within the existing BSS/OSS environment without lengthy, high-cost
-infrastructure integration. The Beijing release was the first of a series of
-enhancements in support of SDO collaborations, which are expected to support
-inter-operator exchanges and other use cases defined by associated standards
-bodies such as MEF, TM Forum and others.
+infrastructure services and resources. The SO provides orchestration at a
+very high level, with an end-to-end view of the infrastructure, network,
+and applications.
+
+ONAP External APIs, North Bound Interface (NBI) module, exposes ONAP
+capabilities to OSS/BSS by currently implementing TM Forum APIs. In the
+previous Release, Casablanca, External APIs was already providing a set of
+serviceOrder, serviceInventory, serviceCatalog and event publish/subscribe
+serviceOrder notification management. For Dublin, External APIs is for the
+first time officially involved in two approved ONAP blueprints. One is
+BroadBand Service (BBS), the second one is Cross Domain and Cross Layer VPN
+(CCVPN).
The Virtual Infrastructure Deployment (VID) application enables users to
instantiate infrastructure services from SDC, along with their associated
@@ -361,7 +361,6 @@ software upgrades to existing VNF instances.
Policy-Driven Workload Optimization
-----------------------------------
-
The ONAP Optimization Framework (OOF) provides a policy-driven and model-driven
framework for creating optimization applications for a broad range of use
cases. OOF Homing and Allocation Service (HAS) is a policy driven workload
@@ -374,17 +373,15 @@ ONAP Multi-VIM/Cloud (MC) and several other ONAP components such as Policy, SO,
A&AI etc. play an important role in enabling “Policy-driven
Performance/Security-Aware Adaptive Workload Placement/ Scheduling” across
cloud sites through OOF-HAS. OOF-HAS uses Hardware Platform Awareness (HPA),
-cloud agnostic intent capabilities and real-time capacity checks provided by
+cloud agnostic Intent capabilities, and real-time capacity checks provided by
ONAP MC to determine the optimal VIM/Cloud instances, which can deliver the
required performance SLAs, for workload (VNF etc.) placement and scheduling
(Homing). Operators now realize the true value of virtualization through fine
grained optimization of cloud resources while delivering performance and
-security SLAs. For the Beijing release, this feature was available for the vCPE
-use case.
+security SLAs.
Controllers
-----------
-
Controllers are applications which are coupled with cloud and network services
and execute the configuration, real-time policies, and control the state of
distributed components and services. Rather than using a single monolithic
@@ -397,22 +394,17 @@ responsible for lifecycle management of virtual services and the associated
physical COTS server infrastructure. VF-C provides a generic VNFM capability
but also integrates with external VNFMs and VIMs as part of an NFV MANO stack.
-The new Multisite State Coordination (MUSIC) project records and manages state
-of the Portal and ONAP Optimization Framework to ensure consistency, redundancy
-and high availability across geographically distributed ONAP deployments.
-
Inventory
---------
-
Active and Available Inventory (A&AI) provides real-time views of a system’s
-resources, services, products and their relationships with each other, and in
-Casablanca it also retains a historical view. The views provided by A&AI relate
-data managed by multiple ONAP instances, Business Support Systems (BSS),
-Operation Support Systems (OSS), and network applications to form a
-“top to bottom” view ranging from the products end users buy, to the resources
-that form the raw material for creating the products. A&AI not only forms a
-registry of products, services, and resources, it also maintains up-to-date
-views of the relationships between these inventory items.
+resources, services, products and their relationships with each other, and also
+retains a historical view. The views provided by A&AI relate data managed by
+multiple ONAP instances, Business Support Systems (BSS), Operation Support
+Systems (OSS), and network applications to form a “top to bottom” view ranging
+from the products end users buy, to the resources that form the raw material
+for creating the products. A&AI not only forms a registry of products,
+services, and resources, it also maintains up-to-date views of the
+relationships between these inventory items.
To deliver the promised dynamism of SDN/NFV, A&AI is updated in real time by
the controllers as they make changes in the network environment. A&AI is
@@ -422,24 +414,26 @@ development cycles.
Multi Cloud Adaptation
----------------------
-
Multi-VIM/Cloud provides and infrastructure adaptation layer for VIMs/Clouds
in exposing advanced hardware platform awareness and cloud agnostic intent
capabilities, besides standard capabilities, which are used by OOF and other
components for enhanced cloud selection and SO/VF-C for cloud agnostic workload
-deployment. The cloud agnostic intent capabilities are newly introduced in the
-Casablanca release.
-
-7. Closed Control Loop Automation
-=================================
-
-Closed loop control is provided by cooperation among a number of design time
-and runtime elements. The Runtime loop starts with Data Collection, Analytics
-and Events (DCAE) and then moves through the loop of micro-services like Holmes
-for event detection, Policy for determining actions, and finally controllers
-and orchestrators to implement actions CLAMP is used to monitor the loops
-themselves. CLAMP, Policy and DCAE all have design time aspects to support the
-creation of the loops.
+deployment.
+
+Closed Control Loop Automation
+==============================
+Closed loop control is provided by cooperation among a number of design-time
+and run-time elements. The Runtime loop starts with data collectors from Data
+Collection, Analytics and Events (DCAE). ONAP includes the following
+collectors: VES for events, HV-VES for high-volume events, SNMP for SNMP traps,
+File Collector to receive files, and Restconf Collector to collect the
+notifications. After data collection/verification phase, data are moved through
+the loop of micro-services like Homes for event detection, Policy for
+determining actions, and finally, controllers and orchestrators to implement
+actions CLAMP is used to monitor the loops themselves. DCAE also supports
+(Platform for Network Data Analytics) PNDA analytics capabilities. CLAMP,
+Policy and DCAE all have design time aspects to support the creation of the
+loops.
We refer to this automation pattern as “closed control loop automation” in that
it provides the necessary automation to proactively respond to network and
@@ -454,9 +448,8 @@ Security) functionality. DCAE collects performance, usage, and configuration
data; provides computation of analytics; aids in troubleshooting; and publishes
events, data and analytics (e.g., to policy, orchestration, and the data lake).
Another component, “Holmes”, connects to DCAE and provides alarm correlation
-for ONAP. In the Casablanca Release, DCAE evolved to support new analytics
-capabilities with PNDA (http://pnda.io/) as well as new data collection
-capabilities with High Volume VES and bulk performance management support.
+for ONAP, new data collection capabilities with High Volume VES, and bulk
+performance management support.
Working with the Policy Framework and CLAMP, these components detect problems
in the network and identify the appropriate remediation. In some cases, the
@@ -470,10 +463,9 @@ capabilities with the introduction of adaptive policy execution.
**Figure 3: ONAP Closed Control Loop Automation**
-8. Common Services
-==================
-
-ONAP provides common operational services for all ONAP components including
+Shared Services
+===============
+ONAP provides a set of operational services for all ONAP components including
activity logging, reporting, common data layer, access control, secret and
credential management, resiliency, and software lifecycle management.
@@ -482,17 +474,16 @@ restoration and recovery. They support standardized VNF interfaces and
guidelines.
Operating in a virtualized environment introduces new security challenges and
-opportunities. ONAP provides increased security by embedding access controls
-in each ONAP platform component, augmented by analytics and policy components
+opportunities. ONAP provides increased security by embedding access controls in
+each ONAP platform component, augmented by analytics and policy components
specifically designed for the detection and mitigation of security violations.
-9. ONAP Modeling
-================
-
+ONAP Modeling
+=============
ONAP provides models to assist with service design, the development of ONAP
service components, and with the improvement of standards interoperability.
-Models are essential part for the design time and runtime framework
+Models are an essential part for the design time and runtime framework
development. The ONAP modeling project leverages the experience of member
companies, standard organizations and other open source projects to produce
models which are simple, extensible, and reusable. The goal is to fulfill the
@@ -500,45 +491,64 @@ requirements of various use cases, guide the development and bring consistency
among ONAP components and explore a common model to improve the
interoperability of ONAP.
-In the Casablanca Release, ONAP supports the following Models:
-
-- A VNF Descriptor Information Model based on ETSI NFV IFA011 v.2.4.1 with
- appropriate modifications aligned with ONAP requirements;
-- A VNF Descriptor Model based on TOSCA implementation based on the IM and
- follow the same model definitions in ETSI NFV SOL001 v 0.6.0.
-- VNF Package format leveraging the ETSI NFV SOL004 specification.
-- A Network Service Descriptor (NSD) has been realized by the VFC (using the
- modelling project parsing capabilities).
+In the Dublin Release, ONAP supports the following Models:
+
+- A VNF Descriptor Information Model based on ETSI NFV IFA011 v.2.5.1 with
+ appropriate modifications aligned with ONAP requirements
+- A PNF Descriptor Information Model based on ETSI NFV IFA014 v2.5.1
+- A VNF Descriptor TOSCA based Data Model based on IM and ETSI NFV SOL001
+ v 2.5.1 has been implemented by SDC and supported by vCPE use case.
+- VNF Package format leveraging the ETSI NFV SOL004 specification and supported
+ by VNF SDK project
+- A VNF instance model based on ETSI NFV IFA specification and A&AI
+ implementation
+- A Network Service Descriptor (NSD) has been realized by the VFC (using the
+ modelling project parsing capabilities)
+- These models enable ONAP to interoperate with implementations based on
+ standards and improve industry collaboration.
+
+In Dublin release, in addition to the parser library, modeling project
+introduced generic parser which provide the Tosca parser restful APIs for other
+projects as a standalone service.
+
+Industry Alignment
+==================
+ONAP support and collaboration with other standards and opensource communities
+is evident in the architecture.
-These models enable ONAP to interoperate with implementations based on
-standards, and improve the industry collaboration.
+- MEF and TMF interfaces are used in the External APIs
+- In addition to the ETSI-NFV defined VNFD and NSD models mentioned above, ONAP
+ supports the NFVO interfaces (SOL005 between the SO and VFC, SOL003 from
+ either the SO or VFC to an external VNFM).
-10. ONAP Blueprints
-===================
+Read this whitepaper for more information: The Progress of ONAP: Harmonizing
+Open Source and Standards.
-ONAP can support an unlimited number of use cases. However, to provide concrete
-examples of how to use ONAP to solve real-world problems, the community has
-created a set of blueprints. In addition to helping users rapidly adopt the
-ONAP platform through end-to-end solutions, these blueprints also help the
-community prioritize their work. With the ONAP Casablanca release, we
-introduced two new blueprints: 5G and CCVPN. Prior blueprints, vCPE, VoLTE and
-vFW/vDNS have been ported to Casablanca as well.
+ONAP Blueprints
+===============
+ONAP can support an unlimited number of use cases, within reason. However, to
+provide concrete examples of how to use ONAP to solve real-world problems, the
+community has created a set of blueprints. In addition to helping users rapidly
+adopt the ONAP platform through end-to-end solutions, these blueprints also
+help the community prioritize their work. With the ONAP Dublin release, we
+introduced a new blueprint in the area of residential connectivity: Broadband
+Service. Prior blueprints were vCPE, VoLTE, vFW/vDNS, 5G, and CCVPN. 5G and
+CCVPN underwent feature enhancements during the Dublin release.
5G Blueprint
------------
-The 5G blueprint is a multi-release effort, with Casablanca introducing first
-set of capabilities around PNF integration, edge automation, real-time
-analytics, network slicing, data modeling, homing, scaling, and network
-optimization. The combination of eMBB that promises peak data rates of 20 Mbps,
-uRLLC that guarantees sub millisecond response times and MMTC that can support
-0.92 devices per sq. ft. brings with it some unique requirements. First, ONAP
-needs to support network services that include PNFs in addition to VNFs. Next
-ONAP needs to support edge cloud onboarding as network services will no longer
-be restricted to just large datacenters but will proliferate a large number of
-distributed edge locations. Finally, ONAP needs to collect real-time
-performance data for analytics and policy driven closed-loop automation. These
-requirements have led to several initiatives within ONAP to holistically address
-the 5G blueprint.
+The 5G blueprint is a multi-release effort, with three key initiatives around
+PNF integration, network optimization, and network slicing. The combination of
+eMBB that promises peak data rates of 20 Mbps, uRLLC that guarantees
+sub-millisecond response times and MMTC that can support 0.92 devices per sq.
+ft. brings with it some unique requirements. First, ONAP needs to optimize the
+network around real time and bulk analytics, place VNFs on the correct edge
+cloud, scale and heal services, and provide edge automation. Next, ONAP needs
+to handle end-to-end network slicing. These requirements have led to the three
+above-listed initiatives. Between the Casablanca and Dublin releases, the 5G
+blueprint incorporates PNF integration, edge automation, real-time and bulk
+analytics, homing (VNF placement), scaling and modeling work that will support
+end-to-end network slicing in future releases.
|image4|
@@ -546,22 +556,21 @@ the 5G blueprint.
Read the 5G Blueprint to learn more.
-Virtual CPE Blueprint
----------------------
-
-This blueprint addresses a residential use case, where the services offered to
-a subscriber are currently restricted to what is designed into the broadband
-residential gateway. In this blueprint, the customer has a slimmed down
-physical CPE (pCPE), that only consists of bridging functionality, attached to
-a traditional broadband network such as DSL or DOCSIS (Figure 5). A tunnel is
-established to a data center hosting various VNFs providing a much larger set
-of services to the subscriber at a significantly lower cost to the operator.
-ONAP supports complex orchestration and management of both virtual and underlay
-connectivity with two key components–SDN-C, which manages connectivity service
-, and APP-C, which manages virtualization services. In this case, ONAP provides
-a common service orchestration layer for the end-to-end service. This blueprint
-shows advanced functionality such as scaling, change management , HPA and cloud
-agnostic intent.
+Residential Connectivity Blueprints
+-----------------------------------
+Two ONAP blueprints (vCPE and BBS) address the residential connectivity use
+case.
+
+Virtual CPE (vCPE)
+..................
+Currently, services offered to a subscriber are restricted to what is
+designed into the broadband residential gateway. In the blueprint, the customer
+has a slimmed down physical CPE (pCPE) attached to a traditional broadband
+network such as DSL, DOCSIS, or PON (Figure 5). A tunnel is established to a
+data center hosting various VNFs providing a much larger set of services to the
+subscriber at a significantly lower cost to the operator. In this blueprint,
+ONAP supports complex orchestration and management of open source VNFs and both
+virtual and underlay connectivity.
|image5|
@@ -569,29 +578,44 @@ agnostic intent.
Read the Residential vCPE Use Case with ONAP blueprint to learn more.
+Broadband Service (BBS)
+.......................
+This blueprint provides multi-gigabit residential
+internet connectivity services based on PON (Passive Optical Network) access
+technology. A key element of this blueprint is to show automatic
+re-registration of an ONT (Optical Network Terminal) once the subscriber moves
+(nomadic ONT) as well as service subscription plan changes. This blueprint uses
+ONAP for the design, deployment, lifecycle management, and service assurance of
+broadband services. It further shows how ONAP can orchestrate services across
+different locations (e.g. Central Office, Core) and technology domains (e.g.
+Access, Edge).
+
+|image6|
+
+**Figure 6. ONAP BBS Architecture**
+
+Read the Residential Connectivity Blueprint to learn more.
+
Voice over LTE (VoLTE) Blueprint
--------------------------------
+This blueprint uses ONAP to orchestrate a Voice over LTE service. The VoLTE
+blueprint incorporates commercial VNFs to create and manage the underlying vEPC
+and vIMS services by interworking with vendor-specific components, including
+VNFMs, EMSs, VIMs and SDN controllers, across Edge Data Centers and a Core Data
+Center. ONAP supports the VoLTE use case with several key components: SO, VF-C,
+SDN-C, and Multi-VIM/ Cloud. In this blueprint, SO is responsible for VoLTE
+end-to-end service orchestration working in collaboration with VF-C and SDN-C.
+SDN-C establishes network connectivity, then the VF-C component completes the
+Network Services and VNF lifecycle management (including service initiation,
+termination and manual scaling) and FCAPS (fault, configuration, accounting,
+performance, security) management. This blueprint also shows advanced
+functionality such as scaling and change management.
-This blueprint uses ONAP to orchestrate a Voice over LTE service. This
-blueprint demonstrates how a Mobile Service Provider (SP) could deploy VoLTE
-services based on SDN/NFV. The VoLTE blueprint incorporates commercial VNFs to
-create and manage the underlying vEPC and vIMS services by interworking with
-vendor-specific components, including VNFMs, EMSs, VIMs and SDN controllers,
-across Edge Data Centers and a Core Data Center. ONAP supports the VoLTE use
-case with several key components: SO, VF-C, SDN-C, and Multi-VIM/ Cloud. In
-this blueprint, SO is responsible for VoLTE end-to-end service orchestration
-working in collaboration with VF-C and SDN-C. SDN-C establishes network
-connectivity, then the VF-C component completes the Network Services and VNF
-lifecycle management (including service initiation, termination and manual
-scaling) and FCAPS (fault, configuration, accounting, performance, security)
-management. This blueprint also shows advanced functionality such as scaling
-and change management.
-
-|image6|
+|image7|
-**Figure 6. ONAP VoLTE Architecture Open Network Automation Platform**
+**Figure 7. ONAP VoLTE Architecture Open Network Automation Platform**
-Read the VoLTE with ONAP blueprint to learn more.
+Read the VoLTE Blueprint to learn more.
CCVPN (Cross Domain and Cross Layer VPN) Blueprint
--------------------------------------------------
@@ -600,67 +624,64 @@ high-speed OTN (Optical Transport Networks) across carrier networks. They also
want to provide a high-speed, flexible and intelligent service for high-value
customers, and an instant and flexible VPN service for SMB companies.
-|image7|
+|image8|
-**Figure 7. ONAP CCVPN Architecture**
+**Figure 8. ONAP CCVPN Architecture**
The CCVPN (Cross Domain and Cross Layer VPN) blueprint is a combination of SOTN
(Super high-speed Optical Transport Network) and ONAP, which takes advantage of
the orchestration ability of ONAP, to realize a unified management and
scheduling of resource and services. It achieves cross-domain orchestration and
-ONAP peering across service providers. ONAP supports the CCVPN use case with
-several key components: SO, VF-C, SDN-C, Policy, Holmes and DCAE. In this
-blueprint, SO is responsible for CCVPN end-to-end service orchestration working
-in collaboration with VF-C and SDN-C. SDN-C establishes network connectivity,
-then the VF-C component completes the Network Services and VNF lifecycle
-management. ONAP peering across CSPs uses east-west API which is being aligned
-with the MEF Interlude API. The key innovations in this use case are physical
-network discovery and modeling, cross-domain orchestration across multiple
-physical networks, cross operator end-to-end service provisioning and
-close-loop reroute for cross-domain service.
-
-Read the CCVPN with ONAP blueprint to learn more.
+ONAP peering across service providers. In this blueprint, SO is responsible for
+CCVPN end-to-end service orchestration working in collaboration with VF-C and
+SDN-C. SDN-C establishes network connectivity, then the VF-C component
+completes the Network Services and VNF lifecycle management. ONAP peering
+across CSPs uses east-west API which is being aligned with the MEF Interlude
+API. The key innovations in this use case are physical network discovery and
+modeling, cross-domain orchestration across multiple physical networks, cross
+operator end-to-end service provisioning and close-loop reroute for
+cross-domain service. The Dublin release added support for dynamic changes
+(branch sites, VNFs) and intelligent service optimization.
+
+To provide an extension work, many enhancement functions have been added into
+CCVPN blueprint in Dublin release. Multi-sites VPN service, service change and
+close-loop bandwidth adjustment will be realized in Dublin release, other
+functions, like AI Apps, SFC and E-LAN service will be supported in the next
+few releases.
+
+Read the CCVPN Blueprint to learn more.
vFW/vDNS Blueprint
------------------
-
-The virtual firewall, virtual DNS blueprint is a basic demo to verify that
-ONAP has been correctly installed and to get a basic introduction to ONAP.
-The blueprint consists of 5 VNFs: vFW, vPacketGenerator, vDataSink, vDNS and
+The virtual firewall, virtual DNS blueprint is a basic demo to verify that ONAP
+has been correctly installed and to get a basic introduction to ONAP. The
+blueprint consists of 5 VNFs: vFW, vPacketGenerator, vDataSink, vDNS and
vLoadBalancer. The blueprint exercises most aspects of ONAP, showing VNF
onboarding, network service creation, service deployment and closed-loop
automation. The key components involved are SDC, CLAMP, SO, APP-C, DCAE and
-Policy.
-
-Read the vFW/vDNS with ONAP blueprint to learn more.
-
-BBS (Broadband Service) Blueprint
----------------------------------
-
-The Broadband Service blueprint uses ONAP for the design, provisioning, life-cycle management and
-assurance of fixed broadband access services. In a first step, BBS blueprint works with multi-Gigabit
-Internet Connectivity services based on PON (Passive Optical Network access technology, and relies
-on the orchestration and automation capabilities provided by the ONAP platform to support new
-scenarios, such as the Nomadic ONT (see Figure 8).
-
-|image8|
-
-**Figure 8. ONAP BBS Nomadic ONT Architecture**
-
-This blueprint shows the extensibility of the ONAP platform in supporting the orchestration of
-services across different location (e.g., Central Office, Core) and technology domains (e.g.,
-Access, Edge).
-
-In a joint collaboration with BBF (Broadband Forum) members, BBS implements and tests some of the
-specifications defined in the architectural framework of CloudCO (Cloud Central Office), Technical
-Report TR-384, among others. CloudCO aims at re-architecting the broadband network using SDN and NFV
-technologies and a cloud-like infrastructure deployed at Central Offices.
-
-The definition of External API capabilities supporting this use case also relies on TM Forum
-OpenAPIs and MEF LSO.
+Policy. In the Dublin release, the vFW blueprint has been demonstrated by
+using a mix of a CNF and VNF.
+
+Conclusion
+==========
+The ONAP platform provides a comprehensive platform for real-time,
+policy-driven orchestration and automation of physical and virtual network
+functions that will enable software, network, IT and cloud providers and
+developers to rapidly automate new services and support complete lifecycle
+management.
+
+By unifying member resources, ONAP will accelerate the development of a vibrant
+ecosystem around a globally shared architecture and implementation for network
+automation—with an open standards focus— faster than any one product could on
+its own.
+
+Resources
+=========
+Watch videos about the major platform components on
+`YouTube <https://www.youtube.com/channel/UCmzybjwmY1te0FHxLFY-Uog>`_ and
+`Youku <https://i.youku.com/i/UNTI4MjA5MDg5Ng==?spm=a2h1n.8251843.0.0>`_.
-BBS uses the following ONAP key components: ExternalAPI, SDC, SO, SDN-C, APEX policy engine and
-DCAE.
+Read about how ONAP can be deployed using containers.
.. |image1| image:: media/ONAP-toplevel.png
:width: 6.5in
@@ -677,11 +698,11 @@ DCAE.
.. |image5| image:: media/ONAP-vcpe.png
:width: 6.5in
:height: 3.28271in
-.. |image6| image:: media/ONAP-volte.png
+.. |image6| image:: media/ONAP-bbs.png
:width: 6.5in
:height: 3.02431in
-.. |image7| image:: media/ONAP-ccvpn.png
+.. |image7| image:: media/ONAP-volte.png
:width: 6.5in
:height: 3.02431in
-.. |image8| image:: media/ONAP-bbs.png
+.. |image8| image:: media/ONAP-ccvpn.png
:width: 6.5in