aboutsummaryrefslogtreecommitdiffstats
path: root/vnfs/DAaaS/sample-apps/training/sample-horovod-app/keras_mnist_advanced_modified.py
blob: 7cfa7045f9374e1dd9fdd2cbe6799c7168fe9ffe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from __future__ import print_function
import os
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import backend as K
import tensorflow as tf
import horovod.tensorflow.keras as hvd


# Horovod: initialize Horovod.
hvd.init()

# Horovod: pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
#config.gpu_options.allow_growth = True
#config.gpu_options.visible_device_list = str(hvd.local_rank())
K.set_session(tf.Session(config=config))

batch_size = 128
num_classes = 10

# Enough epochs to demonstrate learning rate warmup and the reduction of
# learning rate when training plateaues.
epochs = 24

# Input image dimensions
img_rows, img_cols = 28, 28

# The data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# Determine how many batches are there in train and test sets
train_batches = len(x_train) // batch_size
test_batches = len(x_test) // batch_size

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# Convert class vectors to binary class matrices
y_train = tf.keras.utils.to_categorical(y_train, num_classes)
y_test = tf.keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

# Horovod: adjust learning rate based on number of GPUs.
opt = tf.keras.optimizers.Adadelta(lr=1.0 * hvd.size())

# Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)

model.compile(loss=tf.keras.losses.categorical_crossentropy,
              optimizer=opt,
              metrics=['accuracy'])

callbacks = [
    # Horovod: broadcast initial variable states from rank 0 to all other processes.
    # This is necessary to ensure consistent initialization of all workers when
    # training is started with random weights or restored from a checkpoint.
    hvd.callbacks.BroadcastGlobalVariablesCallback(0),

    # Horovod: average metrics among workers at the end of every epoch.
    #
    # Note: This callback must be in the list before the ReduceLROnPlateau,
    # TensorBoard or other metrics-based callbacks.
    hvd.callbacks.MetricAverageCallback(),

    # Horovod: using `lr = 1.0 * hvd.size()` from the very beginning leads to worse final
    # accuracy. Scale the learning rate `lr = 1.0` ---> `lr = 1.0 * hvd.size()` during
    # the first five epochs. See https://arxiv.org/abs/1706.02677 for details.
    hvd.callbacks.LearningRateWarmupCallback(warmup_epochs=5, verbose=1),

    # Reduce the learning rate if training plateaues.
    tf.keras.callbacks.ReduceLROnPlateau(patience=10, verbose=1),
]

# Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if hvd.rank() == 0:
    callbacks.append(tf.keras.callbacks.ModelCheckpoint(
        './checkpoint-{epoch}.h5'))

# Set up ImageDataGenerators to do data augmentation for the training images.
train_gen = ImageDataGenerator(rotation_range=8, width_shift_range=0.08, shear_range=0.3,
                               height_shift_range=0.08, zoom_range=0.08)
test_gen = ImageDataGenerator()

# Train the model.
# Horovod: the training will randomly sample 1 / N batches of training data and
# 3 / N batches of validation data on every worker, where N is the number of workers.
# Over-sampling of validation data helps to increase probability that every validation
# example will be evaluated.
model.fit_generator(train_gen.flow(x_train, y_train, batch_size=batch_size),
                    steps_per_epoch=train_batches // hvd.size(),
                    callbacks=callbacks,
                    epochs=epochs,
                    verbose=1,
                    validation_data=test_gen.flow(
                        x_test, y_test, batch_size=batch_size),
                    validation_steps=3 * test_batches // hvd.size())

# Evaluate the model on the full data set.
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

# Save Model to Minio
if hvd.rank() == 0:
    print('Model Summary')
    model.summary()
    print('Exporting trained model to Minio Model Repo')
    base_path = os.environ['MODEL_BASE_PATH']

    # Option 1(Preferred) - Using Keras api and Tensorflow v1.13 version
    saved_model_path = tf.contrib.saved_model.save_keras_model(model, base_path)
    print('Model Saved to {} Using new Keras API!!!'.format(saved_model_path))
    # Option 2 - Tensorflow v1.13+ Builder saved_model api.
    # builder = saved_model_builder.SavedModelBuilder(base_path)

    # print(model.input)
    # print(model.outputs)

    # signature = predict_signature_def(inputs={"inputs": model.input},
    #                                   outputs={t.name:t for t in model.outputs})
    # print(signature)
    # K.set_learning_phase(0)
    # with K.get_session() as sess:
    #     builder.add_meta_graph_and_variables(sess=sess,
    #                                          tags=[tag_constants.SERVING],
    #                                          signature_def_map={'predict': signature})
    #     builder.save()
    # print('Model Saved to S3 Using Builder!!!')

    # Option 3 - Tensorflow v1.13 Will be deprecated in Tensorflow v2
    # tf.saved_model.simple_save(
    #     keras.backend.get_session(),
    #     export_path,
    #     inputs={'input_image': model.input},
    #     outputs={t.name: t for t in model.outputs})