summaryrefslogtreecommitdiffstats
path: root/components/model-catalog/resource-dictionary/starter-dictionary/pnf-id.json
blob: 32468533a78e0c48f90741abd5a2dcbfd03b6ab5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
{
  "name" : "pnf-id",
  "tags" : "pnf-id",
  "updated-by" : "Rodrigo Ottero <rodrigo.ottero@est.tech>",
  "property" : {
    "description" : "pnf-id",
    "type" : "string"
  },
  "sources" : {
    "input" : {
      "type" : "source-input",
      "properties" : { }
    }
  }
}
_8h_aacc3ee1a7f283f8ef65cea31f4436a95}{M\+AX}(x, y)~((x)$>$(y)?(x)\+:(y)) \item \#define \hyperlink{define_8h_a74e75242132eaabbc1c512488a135926}{M\+IN}(x, y)~((x)$>$(y)?(y)\+:(x)) \end{DoxyCompactItemize} \subsubsection{Detailed Description} testing defines This is to test the documentation of defines. \subsubsection{Macro Definition Documentation} \hypertarget{define_8h_a996f7be338ccb40d1a2a5abc1ad61759}{}\label{define_8h_a996f7be338ccb40d1a2a5abc1ad61759} \index{define.\+h@{define.\+h}!A\+BS@{A\+BS}} \index{A\+BS@{A\+BS}!define.\+h@{define.\+h}} \paragraph{\texorpdfstring{A\+BS}{ABS}} {\footnotesize\ttfamily \#define A\+BS(\begin{DoxyParamCaption}\item[{}]{x }\end{DoxyParamCaption})~(((x)$>$0)?(x)\+:-\/(x))} Computes the absolute value of its argument {\itshape x}. \hypertarget{define_8h_aacc3ee1a7f283f8ef65cea31f4436a95}{}\label{define_8h_aacc3ee1a7f283f8ef65cea31f4436a95} \index{define.\+h@{define.\+h}!M\+AX@{M\+AX}} \index{M\+AX@{M\+AX}!define.\+h@{define.\+h}} \paragraph{\texorpdfstring{M\+AX}{MAX}} {\footnotesize\ttfamily \#define M\+AX(\begin{DoxyParamCaption}\item[{}]{x, }\item[{}]{y }\end{DoxyParamCaption})~((x)$>$(y)?(x)\+:(y))} Computes the maximum of {\itshape x} and {\itshape y}. \hypertarget{define_8h_a74e75242132eaabbc1c512488a135926}{}\label{define_8h_a74e75242132eaabbc1c512488a135926} \index{define.\+h@{define.\+h}!M\+IN@{M\+IN}} \index{M\+IN@{M\+IN}!define.\+h@{define.\+h}} \paragraph{\texorpdfstring{M\+IN}{MIN}} {\footnotesize\ttfamily \#define M\+IN(\begin{DoxyParamCaption}\item[{}]{x, }\item[{}]{y }\end{DoxyParamCaption})~((x)$>$(y)?(y)\+:(x))} Computes the minimum of {\itshape x} and {\itshape y}.