aboutsummaryrefslogtreecommitdiffstats
path: root/SoftHSMv2/src/lib/crypto/test/RSATests.cpp
blob: 6af1e19fb756ebd9fe2484288c35c96ae23a6248 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/*
 * Copyright (c) 2010 SURFnet bv
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*****************************************************************************
 RSATests.cpp

 Contains test cases to test the RNG class
 *****************************************************************************/

#include <stdlib.h>
#include <vector>
#include <cppunit/extensions/HelperMacros.h>
#include "RSATests.h"
#include "CryptoFactory.h"
#include "RNG.h"
#include "AsymmetricKeyPair.h"
#include "AsymmetricAlgorithm.h"
#include "RSAParameters.h"
#include "RSAPublicKey.h"
#include "RSAPrivateKey.h"

CPPUNIT_TEST_SUITE_REGISTRATION(RSATests);

void RSATests::setUp()
{
	rsa = NULL;

	rsa = CryptoFactory::i()->getAsymmetricAlgorithm(AsymAlgo::RSA);

	// Check the RSA object
	CPPUNIT_ASSERT(rsa != NULL);
}

void RSATests::tearDown()
{
	if (rsa != NULL)
	{
		CryptoFactory::i()->recycleAsymmetricAlgorithm(rsa);
	}

	fflush(stdout);
}

void RSATests::testKeyGeneration()
{
	AsymmetricKeyPair* kp;
	RSAParameters p;

	// Public exponents to test
	std::vector<ByteString> exponents;
	exponents.push_back("010001");
	exponents.push_back("03");
	exponents.push_back("0B");
	exponents.push_back("11");

	// Key sizes to test
	std::vector<size_t> keySizes;
	keySizes.push_back(1024);
#ifndef WITH_FIPS
	keySizes.push_back(1025);
#endif
	keySizes.push_back(1280);
	keySizes.push_back(2048);
	//keySizes.push_back(4096);

	for (std::vector<ByteString>::iterator e = exponents.begin(); e != exponents.end(); e++)
	{
		for (std::vector<size_t>::iterator k = keySizes.begin(); k != keySizes.end(); k++)
		{
			p.setE(*e);
			p.setBitLength(*k);

			// Generate key-pair
			CPPUNIT_ASSERT(rsa->generateKeyPair(&kp, &p));

			RSAPublicKey* pub = (RSAPublicKey*) kp->getPublicKey();
			RSAPrivateKey* priv = (RSAPrivateKey*) kp->getPrivateKey();

			CPPUNIT_ASSERT(pub->getBitLength() == *k);
			CPPUNIT_ASSERT(priv->getBitLength() == *k);
			CPPUNIT_ASSERT(pub->getE() == *e);
			CPPUNIT_ASSERT(priv->getE() == *e);

			rsa->recycleKeyPair(kp);
		}
	}
}

void RSATests::testSerialisation()
{
	// Generate a 1024-bit key-pair for testing
	AsymmetricKeyPair* kp;
	RSAParameters p;

	p.setE("010001");
	p.setBitLength(1024);

	CPPUNIT_ASSERT(rsa->generateKeyPair(&kp, &p));
	CPPUNIT_ASSERT(kp != NULL);

	// Serialise the parameters
	ByteString serialisedParams = p.serialise();

	// Deserialise the parameters
	AsymmetricParameters* dP;

	CPPUNIT_ASSERT(rsa->reconstructParameters(&dP, serialisedParams));
	CPPUNIT_ASSERT(dP->areOfType(RSAParameters::type));

	RSAParameters* ddP = (RSAParameters*) dP;

	CPPUNIT_ASSERT(p.getE() == ddP->getE());
	CPPUNIT_ASSERT(p.getBitLength() == ddP->getBitLength());
	rsa->recycleParameters(dP);

	// Serialise the key-pair
	ByteString serialisedKP = kp->serialise();

	CPPUNIT_ASSERT(serialisedKP.size() != 0);

	// Deserialise the key-pair
	AsymmetricKeyPair* dKP;

	CPPUNIT_ASSERT(rsa->reconstructKeyPair(&dKP, serialisedKP));
	CPPUNIT_ASSERT(serialisedKP.size() == 0);
	CPPUNIT_ASSERT(dKP != NULL);

	RSAPublicKey* pub = (RSAPublicKey*) kp->getPublicKey();
	RSAPrivateKey* priv = (RSAPrivateKey*) kp->getPrivateKey();

	RSAPublicKey* dPub = (RSAPublicKey*) dKP->getPublicKey();
	RSAPrivateKey* dPriv = (RSAPrivateKey*) dKP->getPrivateKey();

	CPPUNIT_ASSERT(pub->getN() == dPub->getN());
	CPPUNIT_ASSERT(pub->getE() == dPub->getE());

	CPPUNIT_ASSERT(priv->getP() == dPriv->getP());
	CPPUNIT_ASSERT(priv->getQ() == dPriv->getQ());
	CPPUNIT_ASSERT(priv->getPQ() == dPriv->getPQ());
	CPPUNIT_ASSERT(priv->getDP1() == dPriv->getDP1());
	CPPUNIT_ASSERT(priv->getDQ1() == dPriv->getDQ1());
	CPPUNIT_ASSERT(priv->getD() == dPriv->getD());
	CPPUNIT_ASSERT(priv->getN() == dPriv->getN());
	CPPUNIT_ASSERT(priv->getE() == dPriv->getE());

	// Serialise and deserialise the public key
	ByteString serialisedPub = pub->serialise();

	RSAPublicKey* desPub;

	CPPUNIT_ASSERT(rsa->reconstructPublicKey((PublicKey**) &desPub, serialisedPub));
	CPPUNIT_ASSERT(serialisedPub.size() == 0);
	CPPUNIT_ASSERT(desPub != NULL);

	CPPUNIT_ASSERT(pub->getN() == desPub->getN());
	CPPUNIT_ASSERT(pub->getE() == desPub->getE());

	// Serialise and deserialise the private key
	ByteString serialisedPriv = priv->serialise();

	RSAPrivateKey* desPriv;

	CPPUNIT_ASSERT(rsa->reconstructPrivateKey((PrivateKey**) &desPriv, serialisedPriv));
	CPPUNIT_ASSERT(serialisedPriv.size() == 0);
	CPPUNIT_ASSERT(desPriv != NULL);

	CPPUNIT_ASSERT(priv->getP() == desPriv->getP());
	CPPUNIT_ASSERT(priv->getQ() == desPriv->getQ());
	CPPUNIT_ASSERT(priv->getPQ() == desPriv->getPQ());
	CPPUNIT_ASSERT(priv->getDP1() == desPriv->getDP1());
	CPPUNIT_ASSERT(priv->getDQ1() == desPriv->getDQ1());
	CPPUNIT_ASSERT(priv->getD() == desPriv->getD());
	CPPUNIT_ASSERT(priv->getN() == desPriv->getN());
	CPPUNIT_ASSERT(priv->getE() == desPriv->getE());

	rsa->recycleKeyPair(kp);
	rsa->recycleKeyPair(dKP);
	rsa->recyclePublicKey(desPub);
	rsa->recyclePrivateKey(desPriv);
}

void RSATests::testPKCS8()
{
	// Generate a 1024-bit key-pair for testing
	AsymmetricKeyPair* kp;
	RSAParameters p;

	p.setE("010001");
	p.setBitLength(1024);

	CPPUNIT_ASSERT(rsa->generateKeyPair(&kp, &p));
	CPPUNIT_ASSERT(kp != NULL);

	RSAPrivateKey* priv = (RSAPrivateKey*) kp->getPrivateKey();
	CPPUNIT_ASSERT(priv != NULL);

	// Encode and decode the private key
	ByteString pkcs8 = priv->PKCS8Encode();
	CPPUNIT_ASSERT(pkcs8.size() != 0);

	RSAPrivateKey* dPriv = (RSAPrivateKey*) rsa->newPrivateKey();
	CPPUNIT_ASSERT(dPriv != NULL);

	CPPUNIT_ASSERT(dPriv->PKCS8Decode(pkcs8));

	CPPUNIT_ASSERT(priv->getP() == dPriv->getP());
	CPPUNIT_ASSERT(priv->getQ() == dPriv->getQ());
	CPPUNIT_ASSERT(priv->getPQ() == dPriv->getPQ());
	CPPUNIT_ASSERT(priv->getDP1() == dPriv->getDP1());
	CPPUNIT_ASSERT(priv->getDQ1() == dPriv->getDQ1());
	CPPUNIT_ASSERT(priv->getD() == dPriv->getD());
	CPPUNIT_ASSERT(priv->getN() == dPriv->getN());
	CPPUNIT_ASSERT(priv->getE() == dPriv->getE());

	rsa->recycleKeyPair(kp);
	rsa->recyclePrivateKey(dPriv);
}

void RSATests::testSigningVerifying()
{
	AsymmetricKeyPair* kp;
	RSAParameters p;

	// Public exponents to test
	std::vector<ByteString> exponents;
	exponents.push_back("010001");
	exponents.push_back("03");
	exponents.push_back("0B");
	exponents.push_back("11");

	// Key sizes to test
	std::vector<size_t> keySizes;
	keySizes.push_back(1024);
	keySizes.push_back(1280);
	keySizes.push_back(2048);
	//keySizes.push_back(4096);

	// Mechanisms to test
	std::vector<AsymMech::Type> mechanisms;
#ifndef WITH_FIPS
	mechanisms.push_back(AsymMech::RSA_MD5_PKCS);
#endif
	mechanisms.push_back(AsymMech::RSA_SHA1_PKCS);
	mechanisms.push_back(AsymMech::RSA_SHA224_PKCS);
	mechanisms.push_back(AsymMech::RSA_SHA256_PKCS);
	mechanisms.push_back(AsymMech::RSA_SHA384_PKCS);
	mechanisms.push_back(AsymMech::RSA_SHA512_PKCS);
	mechanisms.push_back(AsymMech::RSA_SHA1_PKCS_PSS);
	mechanisms.push_back(AsymMech::RSA_SHA224_PKCS_PSS);
	mechanisms.push_back(AsymMech::RSA_SHA256_PKCS_PSS);
	mechanisms.push_back(AsymMech::RSA_SHA384_PKCS_PSS);
	mechanisms.push_back(AsymMech::RSA_SHA512_PKCS_PSS);
#ifndef WITH_FIPS
	mechanisms.push_back(AsymMech::RSA_SSL);
#endif

	/* Max salt length for SHA512 and 1024-bit RSA is 62 bytes */
	RSA_PKCS_PSS_PARAMS pssParams[] = {
		{ HashAlgo::SHA1,   AsymRSAMGF::MGF1_SHA1,   20 },
		{ HashAlgo::SHA224, AsymRSAMGF::MGF1_SHA224, 0  },
		{ HashAlgo::SHA256, AsymRSAMGF::MGF1_SHA256, 0  },
		{ HashAlgo::SHA384, AsymRSAMGF::MGF1_SHA384, 48 },
		{ HashAlgo::SHA512, AsymRSAMGF::MGF1_SHA512, 62 }
	};

	for (std::vector<ByteString>::iterator e = exponents.begin(); e != exponents.end(); e++)
	{
		for (std::vector<size_t>::iterator k = keySizes.begin(); k != keySizes.end(); k++)
		{
			p.setE(*e);
			p.setBitLength(*k);

			// Generate key-pair
			CPPUNIT_ASSERT(rsa->generateKeyPair(&kp, &p));

			// Generate some data to sign
			ByteString dataToSign;

			RNG* rng = CryptoFactory::i()->getRNG();

			CPPUNIT_ASSERT(rng->generateRandom(dataToSign, 567));

			// Test mechanisms that perform internal hashing
			for (std::vector<AsymMech::Type>::iterator m = mechanisms.begin(); m != mechanisms.end(); m++)
			{
				ByteString blockSignature, singlePartSignature;
				void* param = NULL;
				size_t paramLen = 0;
				bool isPSS = false;

				switch (*m)
				{
					case AsymMech::RSA_SHA1_PKCS_PSS:
						param = &pssParams[0];
						paramLen = sizeof(pssParams[0]);
						isPSS = true;
						break;
					case AsymMech::RSA_SHA224_PKCS_PSS:
						param = &pssParams[1];
						paramLen = sizeof(pssParams[1]);
						isPSS = true;
						break;
					case AsymMech::RSA_SHA256_PKCS_PSS:
						param = &pssParams[2];
						paramLen = sizeof(pssParams[2]);
						isPSS = true;
						break;
					case AsymMech::RSA_SHA384_PKCS_PSS:
						param = &pssParams[3];
						paramLen = sizeof(pssParams[3]);
						isPSS = true;
						break;
					case AsymMech::RSA_SHA512_PKCS_PSS:
						param = &pssParams[4];
						paramLen = sizeof(pssParams[4]);
						isPSS = true;
						break;
					default:
						break;
				}

				// Sign the data in blocks
				CPPUNIT_ASSERT(rsa->signInit(kp->getPrivateKey(), *m, param, paramLen));
				CPPUNIT_ASSERT(rsa->signUpdate(dataToSign.substr(0, 134)));
				CPPUNIT_ASSERT(rsa->signUpdate(dataToSign.substr(134, 289)));
				CPPUNIT_ASSERT(rsa->signUpdate(dataToSign.substr(134 + 289)));
				CPPUNIT_ASSERT(rsa->signFinal(blockSignature));

				// Sign the data in one pass
				CPPUNIT_ASSERT(rsa->sign(kp->getPrivateKey(), dataToSign, singlePartSignature, *m, param, paramLen));

				// If it is not a PSS signature, check if the two signatures match
				if (!isPSS)
				{
					// Check if the two signatures match
					CPPUNIT_ASSERT(blockSignature == singlePartSignature);
				}

				// Now perform multi-pass verification
				CPPUNIT_ASSERT(rsa->verifyInit(kp->getPublicKey(), *m, param, paramLen));
				CPPUNIT_ASSERT(rsa->verifyUpdate(dataToSign.substr(0, 125)));
				CPPUNIT_ASSERT(rsa->verifyUpdate(dataToSign.substr(125, 247)));
				CPPUNIT_ASSERT(rsa->verifyUpdate(dataToSign.substr(125 + 247)));
				CPPUNIT_ASSERT(rsa->verifyFinal(blockSignature));

				// And single-pass verification
				CPPUNIT_ASSERT(rsa->verify(kp->getPublicKey(), dataToSign, singlePartSignature, *m, param, paramLen));
			}

			// Test mechanisms that do not perform internal hashing

			// Test PKCS #1 signing
			CPPUNIT_ASSERT(rng->generateRandom(dataToSign, 35));

			// Sign the data
			ByteString signature;
			CPPUNIT_ASSERT(rsa->sign(kp->getPrivateKey(), dataToSign, signature, AsymMech::RSA_PKCS));

			// Verify the signature
			CPPUNIT_ASSERT(rsa->verify(kp->getPublicKey(), dataToSign, signature, AsymMech::RSA_PKCS));

			// Test raw RSA signing
			size_t byteSize = *k >> 3;

			CPPUNIT_ASSERT(rng->generateRandom(dataToSign, byteSize));

			// Strip the topmost bit
			dataToSign[0] &= 0x7F;

			// Sign the data
			CPPUNIT_ASSERT(rsa->sign(kp->getPrivateKey(), dataToSign, signature, AsymMech::RSA));

			// Verify the signature
			CPPUNIT_ASSERT(rsa->verify(kp->getPublicKey(), dataToSign, signature, AsymMech::RSA));

#ifdef WITH_RAW_PSS
			// Test raw (SHA1) PKCS PSS signing
			CPPUNIT_ASSERT(rng->generateRandom(dataToSign, 20));
			CPPUNIT_ASSERT(rsa->sign(kp->getPrivateKey(), dataToSign, signature, AsymMech::RSA_PKCS_PSS, &pssParams[0], sizeof(pssParams[0])));
			CPPUNIT_ASSERT(rsa->verify(kp->getPublicKey(), dataToSign, signature, AsymMech::RSA_PKCS_PSS, &pssParams[0], sizeof(pssParams[0])));

			// Test raw (SHA224) PKCS PSS signing
			CPPUNIT_ASSERT(rng->generateRandom(dataToSign, 28));
			CPPUNIT_ASSERT(rsa->sign(kp->getPrivateKey(), dataToSign, signature, AsymMech::RSA_PKCS_PSS, &pssParams[1], sizeof(pssParams[1])));
			CPPUNIT_ASSERT(rsa->verify(kp->getPublicKey(), dataToSign, signature, AsymMech::RSA_PKCS_PSS, &pssParams[1], sizeof(pssParams[1])));

			// Test raw (SHA256) PKCS PSS signing
			CPPUNIT_ASSERT(rng->generateRandom(dataToSign, 32));
			CPPUNIT_ASSERT(rsa->sign(kp->getPrivateKey(), dataToSign, signature, AsymMech::RSA_PKCS_PSS, &pssParams[2], sizeof(pssParams[2])));
			CPPUNIT_ASSERT(rsa->verify(kp->getPublicKey(), dataToSign, signature, AsymMech::RSA_PKCS_PSS, &pssParams[2], sizeof(pssParams[2])));

			// Test raw (SHA384) PKCS PSS signing
			CPPUNIT_ASSERT(rng->generateRandom(dataToSign, 48));
			CPPUNIT_ASSERT(rsa->sign(kp->getPrivateKey(), dataToSign, signature, AsymMech::RSA_PKCS_PSS, &pssParams[3], sizeof(pssParams[3])));
			CPPUNIT_ASSERT(rsa->verify(kp->getPublicKey(), dataToSign, signature, AsymMech::RSA_PKCS_PSS, &pssParams[3], sizeof(pssParams[3])));

			// Test raw (SHA512) PKCS PSS signing
			CPPUNIT_ASSERT(rng->generateRandom(dataToSign, 64));
			CPPUNIT_ASSERT(rsa->sign(kp->getPrivateKey(), dataToSign, signature, AsymMech::RSA_PKCS_PSS, &pssParams[4], sizeof(pssParams[4])));
			CPPUNIT_ASSERT(rsa->verify(kp->getPublicKey(), dataToSign, signature, AsymMech::RSA_PKCS_PSS, &pssParams[4], sizeof(pssParams[4])));
#endif

			rsa->recycleKeyPair(kp);
		}
	}
}

void RSATests::testSignVerifyKnownVector()
{
	// These test vectors were taken from the Crypto++ set of test vectors
	// Crypto++ can be downloaded from www.cryptopp.com

#ifndef WITH_FIPS
	RSAPublicKey* pubKey1 = (RSAPublicKey*) rsa->newPublicKey();
	RSAPublicKey* pubKey2 = (RSAPublicKey*) rsa->newPublicKey();
#endif
	RSAPublicKey* pubKey3 = (RSAPublicKey*) rsa->newPublicKey();
#ifndef WITH_FIPS
	RSAPrivateKey* privKey1_1 = (RSAPrivateKey*) rsa->newPrivateKey();
	RSAPrivateKey* privKey1_2 = (RSAPrivateKey*) rsa->newPrivateKey();
	RSAPrivateKey* privKey2_1 = (RSAPrivateKey*) rsa->newPrivateKey();
	RSAPrivateKey* privKey2_2 = (RSAPrivateKey*) rsa->newPrivateKey();
#endif
	RSAPrivateKey* privKey3 = (RSAPrivateKey*) rsa->newPrivateKey();

#ifndef WITH_FIPS
	// Reconstruct public and private key #1
	ByteString n1	= "0A66791DC6988168DE7AB77419BB7FB0C001C62710270075142942E19A8D8C51D053B3E3782A1DE5DC5AF4EBE99468170114A1DFE67CDC9A9AF55D655620BBAB";
	ByteString e1	= "010001";
	ByteString d1	= "0123C5B61BA36EDB1D3679904199A89EA80C09B9122E1400C09ADCF7784676D01D23356A7D44D6BD8BD50E94BFC723FA87D8862B75177691C11D757692DF8881";
	ByteString p1	= "33D48445C859E52340DE704BCDDA065FBB4058D740BD1D67D29E9C146C11CF61";
	ByteString q1	= "335E8408866B0FD38DC7002D3F972C67389A65D5D8306566D5C4F2A5AA52628B";
	ByteString dp11	= "045EC90071525325D3D46DB79695E9AFACC4523964360E02B119BAA366316241";
	ByteString dq11	= "15EB327360C7B60D12E5E2D16BDCD97981D17FBA6B70DB13B20B436E24EADA59";
	ByteString pq1	= "2CA6366D72781DFA24D34A9A24CBC2AE927A9958AF426563FF63FB11658A461D";

	pubKey1->setN(n1);
	pubKey1->setE(e1);
	privKey1_1->setN(n1);
	privKey1_1->setE(e1);
	privKey1_1->setD(d1);
	privKey1_1->setP(p1);
	privKey1_1->setQ(q1);
	privKey1_1->setDP1(dp11);
	privKey1_1->setDQ1(dq11);
	privKey1_1->setPQ(pq1);

	// The same key but without CRT factors
	privKey1_2->setN(n1);
	privKey1_2->setE(e1);
	privKey1_2->setD(d1);

	// Reconstruct public and private key #2
	ByteString n2	= "A885B6F851A8079AB8A281DB0297148511EE0D8C07C0D4AE6D6FED461488E0D41E3FF8F281B06A3240B5007A5C2AB4FB6BE8AF88F119DB998368DDDC9710ABED";
	ByteString e2	= "010001";
	ByteString d2	= "2B259D2CA3DF851EE891F6F4678BDDFD9A131C95D3305C63D2723B4A5B9C960F5EC8BB7DCDDBEBD8B6A38767D64AD451E9383E0891E4EE7506100481F2B49323";
	ByteString p2	= "D7103CD676E39824E2BE50B8E6533FE7CB7484348E283802AD2B8D00C80D19DF";
	ByteString q2	= "C89996DC169CEB3F227958275968804D4BE9FC4012C3219662F1A438C9950BB3";
	ByteString dp12	= "5D8EA4C8AF83A70634D5920C3DB66D908AC3AF57A597FD75BC9BBB856181C185";
	ByteString dq12	= "C598E54DAEC8ABC1E907769A6C2BD01653ED0C9960E1EDB7E186FDA922883A99";
	ByteString pq2	= "7C6F27B5B51B78AD80FB36E700990CF307866F2943124CBD93D97C137794C104";

	pubKey2->setN(n2);
	pubKey2->setE(e2);
	privKey2_1->setN(n2);
	privKey2_1->setE(e2);
	privKey2_1->setD(d2);
	privKey2_1->setP(p2);
	privKey2_1->setQ(q2);
	privKey2_1->setDP1(dp12);
	privKey2_1->setDQ1(dq12);
	privKey2_1->setPQ(pq2);

	// The same key but without CRT factors
	privKey2_2->setN(n2);
	privKey2_2->setE(e2);
	privKey2_2->setD(d2);
#endif

	ByteString n3	= "A8D68ACD413C5E195D5EF04E1B4FAAF242365CB450196755E92E1215BA59802AAFBADBF2564DD550956ABB54F8B1C917844E5F36195D1088C600E07CADA5C080EDE679F50B3DE32CF4026E514542495C54B1903768791AAE9E36F082CD38E941ADA89BAECADA61AB0DD37AD536BCB0A0946271594836E92AB5517301D45176B5";
	ByteString e3	= "03";
	ByteString d3	= "1C23C1CCE034BA598F8FD2B7AF37F1D30B090F7362AEE68E5187ADAE49B9955C729F24A863B7A38D6E3C748E2972F6D940B7BA89043A2D6C2100256A1CF0F56A8CD35FC6EE205244876642F6F9C3820A3D9D2C8921DF7D82AAADCAF2D7334D398931DDBBA553190B3A416099F3AA07FD5B26214645A828419E122CFB857AD73B";
	ByteString p3	= "C107a2fe924b76e206cb9bc4af2ab7008547c00846bf6d0680b3eac3ebcbd0c7fd7a54c2b9899b08f80cde1d3691eaaa2816b1eb11822d6be7beaf4e30977c49";
	ByteString q3	= "DFEA984CE4307EAFC0D140C2BB82861E5DBAC4F8567CBC981D70440DD639492079031486315E305EB83E591C4A2E96064966F7C894C3CA351925B5CE82D8EF0D";

	pubKey3->setN(n3);
	pubKey3->setE(e3);
	privKey3->setN(n3);
	privKey3->setE(e3);
	privKey3->setD(d3);
	privKey3->setP(p3);
	privKey3->setQ(q3);

#ifndef WITH_FIPS
	// Test with key #1
	const char* testValue1 = "Everyone gets Friday off.";

	ByteString dataToSign1((const unsigned char*) testValue1, strlen(testValue1));

	ByteString expectedSignature1 = "0610761F95FFD1B8F29DA34212947EC2AA0E358866A722F03CC3C41487ADC604A48FF54F5C6BEDB9FB7BD59F82D6E55D8F3174BA361B2214B2D74E8825E04E81";
	ByteString signature1_1;
	ByteString signature1_2;

	CPPUNIT_ASSERT(rsa->signInit(privKey1_1, AsymMech::RSA_SHA1_PKCS));
	CPPUNIT_ASSERT(rsa->signUpdate(dataToSign1));
	CPPUNIT_ASSERT(rsa->signFinal(signature1_1));

#ifndef WITH_BOTAN
	CPPUNIT_ASSERT(rsa->signInit(privKey1_2, AsymMech::RSA_SHA1_PKCS));
	CPPUNIT_ASSERT(rsa->signUpdate(dataToSign1));
	CPPUNIT_ASSERT(rsa->signFinal(signature1_2));

	CPPUNIT_ASSERT(signature1_1 == signature1_2);
#endif
	CPPUNIT_ASSERT(signature1_1 == expectedSignature1);

	CPPUNIT_ASSERT(rsa->verifyInit(pubKey1, AsymMech::RSA_SHA1_PKCS));
	CPPUNIT_ASSERT(rsa->verifyUpdate(dataToSign1));
	CPPUNIT_ASSERT(rsa->verifyFinal(expectedSignature1));

	// Test with key #2
	const char* testValue2 = "test";

	ByteString dataToSign2((const unsigned char*) testValue2, strlen(testValue2));

	ByteString expectedSignature2 = "A7E00CE4391F914D82158D9B732759808E25A1C6383FE87A5199157650D4296CF612E9FF809E686A0AF328238306E79965F6D0138138829D9A1A22764306F6CE";
	ByteString signature2_1;
	ByteString signature2_2;

	CPPUNIT_ASSERT(rsa->signInit(privKey2_1, AsymMech::RSA_SHA1_PKCS));
	CPPUNIT_ASSERT(rsa->signUpdate(dataToSign2));
	CPPUNIT_ASSERT(rsa->signFinal(signature2_1));

#ifndef WITH_BOTAN
	CPPUNIT_ASSERT(rsa->signInit(privKey2_2, AsymMech::RSA_SHA1_PKCS));
	CPPUNIT_ASSERT(rsa->signUpdate(dataToSign2));
	CPPUNIT_ASSERT(rsa->signFinal(signature2_2));

	CPPUNIT_ASSERT(signature2_1 == signature2_2);
#endif
	CPPUNIT_ASSERT(signature2_1 == expectedSignature2);

	CPPUNIT_ASSERT(rsa->verifyInit(pubKey2, AsymMech::RSA_SHA1_PKCS));
	CPPUNIT_ASSERT(rsa->verifyUpdate(dataToSign2));
	CPPUNIT_ASSERT(rsa->verifyFinal(expectedSignature2));
#endif

	// Test with key #3
	ByteString dataToSign3 = "D73829497CDDBE41B705FAAC50E7899FDB5A38BF3A459E536357029E64F8796BA47F4FE96BA5A8B9A4396746E2164F55A25368DDD0B9A5188C7AC3DA2D1F742286C3BDEE697F9D546A25EFCFE53191D743FCC6B47833D993D08804DAECA78FB9076C3C017F53E33A90305AF06220974D46BF19ED3C9B84EDBAE98B45A8771258";
	ByteString expectedSignature3 = "175015BDA50ABE0FA7D39A8353885CA01BE3A7E7FCC55045744111362EE1914473A48DC537D956294B9E20A1EF661D58537ACDC8DE908FA050630FCC272E6D001045E6FDEED2D10531C8603334C2E8DB39E73E6D9665EE1343F9E4198302D2201B44E8E8D06B3EF49CEE6197582163A8490089CA654C0012FCE1BA6511089750";
	ByteString signature3;

	CPPUNIT_ASSERT(rsa->signInit(privKey3, AsymMech::RSA_SHA1_PKCS));
	CPPUNIT_ASSERT(rsa->signUpdate(dataToSign3));
	CPPUNIT_ASSERT(rsa->signFinal(signature3));

	CPPUNIT_ASSERT(signature3 == expectedSignature3);

	CPPUNIT_ASSERT(rsa->verifyInit(pubKey3, AsymMech::RSA_SHA1_PKCS));
	CPPUNIT_ASSERT(rsa->verifyUpdate(dataToSign3));
	CPPUNIT_ASSERT(rsa->verifyFinal(expectedSignature3));

#ifndef WITH_FIPS
	rsa->recyclePublicKey(pubKey1);
	rsa->recyclePublicKey(pubKey2);
#endif
	rsa->recyclePublicKey(pubKey3);
#ifndef WITH_FIPS
	rsa->recyclePrivateKey(privKey1_1);
	rsa->recyclePrivateKey(privKey1_2);
	rsa->recyclePrivateKey(privKey2_1);
	rsa->recyclePrivateKey(privKey2_2);
#endif
	rsa->recyclePrivateKey(privKey3);
}

void RSATests::testEncryptDecrypt()
{
	AsymmetricKeyPair* kp;
	RSAParameters p;

	// Public exponents to test
	std::vector<ByteString> exponents;
	exponents.push_back("010001");
	exponents.push_back("03");
	exponents.push_back("0B");
	exponents.push_back("11");

	// Key sizes to test
	std::vector<size_t> keySizes;
	keySizes.push_back(1024);
	keySizes.push_back(1280);
	keySizes.push_back(2048);
	//keySizes.push_back(4096);

	// Paddings to test
	std::vector<AsymMech::Type> paddings;
	paddings.push_back(AsymMech::RSA_PKCS);
	paddings.push_back(AsymMech::RSA_PKCS_OAEP);
	paddings.push_back(AsymMech::RSA);

	for (std::vector<ByteString>::iterator e = exponents.begin(); e != exponents.end(); e++)
	{
		for (std::vector<size_t>::iterator k = keySizes.begin(); k != keySizes.end(); k++)
		{
			p.setE(*e);
			p.setBitLength(*k);

			// Generate key-pair
			CPPUNIT_ASSERT(rsa->generateKeyPair(&kp, &p));

			RNG* rng = CryptoFactory::i()->getRNG();

			for (std::vector<AsymMech::Type>::iterator pad = paddings.begin(); pad != paddings.end(); pad++)
			{
				// Generate some test data to encrypt based on the selected padding
				ByteString testData;

				if (*pad == AsymMech::RSA_PKCS)
				{
					CPPUNIT_ASSERT(rng->generateRandom(testData, (*k >> 3) - 12));
				}
				else if (*pad == AsymMech::RSA_PKCS_OAEP)
				{
					CPPUNIT_ASSERT(rng->generateRandom(testData, (*k >> 3) - 42));
				}
				else if (*pad == AsymMech::RSA)
				{
					CPPUNIT_ASSERT(rng->generateRandom(testData, *k >> 3));
					testData[0] &= 0x0F;
				}
				else
				{
					CPPUNIT_ASSERT(true == false);
				}

				// Encrypt the data
				ByteString encryptedData;

				CPPUNIT_ASSERT(rsa->encrypt(kp->getPublicKey(), testData, encryptedData, *pad));

				// The encrypted data length should equal the modulus length
				CPPUNIT_ASSERT(encryptedData.size() == (*k >> 3));
				CPPUNIT_ASSERT(encryptedData != testData);

				// Now decrypt the data
				ByteString decryptedData;

				CPPUNIT_ASSERT(rsa->decrypt(kp->getPrivateKey(), encryptedData, decryptedData, *pad));

				// Check that the data was properly decrypted
				CPPUNIT_ASSERT(decryptedData == testData);
			}

			rsa->recycleKeyPair(kp);
		}
	}
}