summaryrefslogtreecommitdiffstats
path: root/SoftHSMv2/src/lib/crypto/test/DSATests.cpp
blob: 80f25149266eb80e3142a82a485724a72f308232 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/*
 * Copyright (c) 2010 SURFnet bv
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*****************************************************************************
 DSATests.cpp

 Contains test cases to test the RNG class
 *****************************************************************************/

#include <stdlib.h>
#include <vector>
#include <cppunit/extensions/HelperMacros.h>
#include "DSATests.h"
#include "CryptoFactory.h"
#include "RNG.h"
#include "AsymmetricKeyPair.h"
#include "AsymmetricAlgorithm.h"
#include "DSAParameters.h"
#include "DSAPublicKey.h"
#include "DSAPrivateKey.h"

CPPUNIT_TEST_SUITE_REGISTRATION(DSATests);

void DSATests::setUp()
{
	dsa = NULL;

	dsa = CryptoFactory::i()->getAsymmetricAlgorithm(AsymAlgo::DSA);

	// Check the DSA object
	CPPUNIT_ASSERT(dsa != NULL);
}

void DSATests::tearDown()
{
	if (dsa != NULL)
	{
		CryptoFactory::i()->recycleAsymmetricAlgorithm(dsa);
	}

	fflush(stdout);
}

void DSATests::testKeyGeneration()
{
	AsymmetricKeyPair* kp;

	// Key sizes to test
	std::vector<size_t> keySizes;
#ifndef WITH_FIPS
	keySizes.push_back(1024);
	keySizes.push_back(1536);
#else
	keySizes.push_back(1024);
#endif
#ifndef WITH_BOTAN
	keySizes.push_back(2048);
#endif

	for (std::vector<size_t>::iterator k = keySizes.begin(); k != keySizes.end(); k++)
	{
		// Generate parameters
		DSAParameters* p;
		AsymmetricParameters** ap = (AsymmetricParameters**) &p;

		CPPUNIT_ASSERT(dsa->generateParameters(ap, (void*) *k));

		// Generate key-pair
		CPPUNIT_ASSERT(dsa->generateKeyPair(&kp, p));

		DSAPublicKey* pub = (DSAPublicKey*) kp->getPublicKey();
		DSAPrivateKey* priv = (DSAPrivateKey*) kp->getPrivateKey();

		CPPUNIT_ASSERT(pub->getBitLength() == *k);
		CPPUNIT_ASSERT(priv->getBitLength() == *k);

		dsa->recycleParameters(p);
		dsa->recycleKeyPair(kp);
	}
}

void DSATests::testSerialisation()
{
	// Generate 1024-bit parameters for testing
	DSAParameters* p;
	AsymmetricParameters** ap = (AsymmetricParameters**) &p;

	CPPUNIT_ASSERT(dsa->generateParameters(ap, (void*) 1024));

	// Serialise the parameters
	ByteString serialisedParams = p->serialise();

	// Deserialise the parameters
	AsymmetricParameters* dP;

	CPPUNIT_ASSERT(dsa->reconstructParameters(&dP, serialisedParams));

	CPPUNIT_ASSERT(dP->areOfType(DSAParameters::type));

	DSAParameters* ddP = (DSAParameters*) dP;

	CPPUNIT_ASSERT(p->getP() == ddP->getP());
	CPPUNIT_ASSERT(p->getQ() == ddP->getQ());
	CPPUNIT_ASSERT(p->getG() == ddP->getG());

	// Generate a key-pair
	AsymmetricKeyPair* kp;

	CPPUNIT_ASSERT(dsa->generateKeyPair(&kp, dP));

	// Serialise the key-pair
	ByteString serialisedKP = kp->serialise();

	// Deserialise the key-pair
	AsymmetricKeyPair* dKP;

	CPPUNIT_ASSERT(dsa->reconstructKeyPair(&dKP, serialisedKP));

	// Check the deserialised key-pair
	DSAPrivateKey* privKey = (DSAPrivateKey*) kp->getPrivateKey();
	DSAPublicKey* pubKey = (DSAPublicKey*) kp->getPublicKey();

	DSAPrivateKey* dPrivKey = (DSAPrivateKey*) dKP->getPrivateKey();
	DSAPublicKey* dPubKey = (DSAPublicKey*) dKP->getPublicKey();

	CPPUNIT_ASSERT(privKey->getP() == dPrivKey->getP());
	CPPUNIT_ASSERT(privKey->getQ() == dPrivKey->getQ());
	CPPUNIT_ASSERT(privKey->getG() == dPrivKey->getG());
	CPPUNIT_ASSERT(privKey->getX() == dPrivKey->getX());

	CPPUNIT_ASSERT(pubKey->getP() == dPubKey->getP());
	CPPUNIT_ASSERT(pubKey->getQ() == dPubKey->getQ());
	CPPUNIT_ASSERT(pubKey->getG() == dPubKey->getG());
	CPPUNIT_ASSERT(pubKey->getY() == dPubKey->getY());

	dsa->recycleParameters(p);
	dsa->recycleParameters(dP);
	dsa->recycleKeyPair(kp);
	dsa->recycleKeyPair(dKP);
}

void DSATests::testPKCS8()
{
	// Generate 1024-bit parameters for testing
	AsymmetricParameters* p;

	CPPUNIT_ASSERT(dsa->generateParameters(&p, (void*) 1024));

	// Generate a key-pair
	AsymmetricKeyPair* kp;

	CPPUNIT_ASSERT(dsa->generateKeyPair(&kp, p));
	CPPUNIT_ASSERT(kp != NULL);

	DSAPrivateKey* priv = (DSAPrivateKey*) kp->getPrivateKey();
	CPPUNIT_ASSERT(priv != NULL);

	// Encode and decode the private key
	ByteString pkcs8 = priv->PKCS8Encode();
	CPPUNIT_ASSERT(pkcs8.size() != 0);

	DSAPrivateKey* dPriv = (DSAPrivateKey*) dsa->newPrivateKey();
	CPPUNIT_ASSERT(dPriv != NULL);

	CPPUNIT_ASSERT(dPriv->PKCS8Decode(pkcs8));

	CPPUNIT_ASSERT(priv->getP() == dPriv->getP());
	CPPUNIT_ASSERT(priv->getQ() == dPriv->getQ());
	CPPUNIT_ASSERT(priv->getG() == dPriv->getG());
	CPPUNIT_ASSERT(priv->getX() == dPriv->getX());

	dsa->recycleParameters(p);
	dsa->recycleKeyPair(kp);
	dsa->recyclePrivateKey(dPriv);
}

void DSATests::testSigningVerifying()
{
	AsymmetricKeyPair* kp;

	// Key sizes to test
	std::vector<size_t> keySizes;
#ifndef WITH_FIPS
	keySizes.push_back(1024);
	keySizes.push_back(1536);
#else
	keySizes.push_back(1024);
#endif
#ifndef WITH_BOTAN
	keySizes.push_back(2048);
#endif

	// Mechanisms to test
	std::vector<AsymMech::Type> mechanisms;
	mechanisms.push_back(AsymMech::DSA_SHA1);
	mechanisms.push_back(AsymMech::DSA_SHA224);
	mechanisms.push_back(AsymMech::DSA_SHA256);

	for (std::vector<size_t>::iterator k = keySizes.begin(); k != keySizes.end(); k++)
	{
		// Generate parameters
		AsymmetricParameters* p;

		CPPUNIT_ASSERT(dsa->generateParameters(&p, (void*) *k));

		// Generate key-pair
		CPPUNIT_ASSERT(dsa->generateKeyPair(&kp, p));

		// Generate some data to sign
		ByteString dataToSign;

		RNG* rng = CryptoFactory::i()->getRNG();

		CPPUNIT_ASSERT(rng->generateRandom(dataToSign, 567));

		// Test mechanisms that perform internal hashing
		for (std::vector<AsymMech::Type>::iterator m = mechanisms.begin(); m != mechanisms.end(); m++)
		{
			ByteString blockSignature, singlePartSignature;

			// Sign the data in blocks
			CPPUNIT_ASSERT(dsa->signInit(kp->getPrivateKey(), *m));
			CPPUNIT_ASSERT(dsa->signUpdate(dataToSign.substr(0, 134)));
			CPPUNIT_ASSERT(dsa->signUpdate(dataToSign.substr(134, 289)));
			CPPUNIT_ASSERT(dsa->signUpdate(dataToSign.substr(134 + 289)));
			CPPUNIT_ASSERT(dsa->signFinal(blockSignature));

			// Sign the data in one pass
			CPPUNIT_ASSERT(dsa->sign(kp->getPrivateKey(), dataToSign, singlePartSignature, *m));

			// Now perform multi-pass verification
			CPPUNIT_ASSERT(dsa->verifyInit(kp->getPublicKey(), *m));
			CPPUNIT_ASSERT(dsa->verifyUpdate(dataToSign.substr(0, 125)));
			CPPUNIT_ASSERT(dsa->verifyUpdate(dataToSign.substr(125, 247)));
			CPPUNIT_ASSERT(dsa->verifyUpdate(dataToSign.substr(125 + 247)));
			CPPUNIT_ASSERT(dsa->verifyFinal(blockSignature));

			// And single-pass verification
			CPPUNIT_ASSERT(dsa->verify(kp->getPublicKey(), dataToSign, singlePartSignature, *m));
		}

		// Test mechanisms that do not perform internal hashing
		CPPUNIT_ASSERT(rng->generateRandom(dataToSign, *k >= 2048 ? 32 : 20));

		// Sign the data
		ByteString signature;
		CPPUNIT_ASSERT(dsa->sign(kp->getPrivateKey(), dataToSign, signature, AsymMech::DSA));

		// Verify the signature
		CPPUNIT_ASSERT(dsa->verify(kp->getPublicKey(), dataToSign, signature, AsymMech::DSA));

		dsa->recycleKeyPair(kp);
		dsa->recycleParameters(p);
	}
}

void DSATests::testSignVerifyKnownVector()
{
	DSAPublicKey* pubKey1 = (DSAPublicKey*) dsa->newPublicKey();
	DSAPublicKey* pubKey2 = (DSAPublicKey*) dsa->newPublicKey();
	DSAPrivateKey* privKey1 = (DSAPrivateKey*) dsa->newPrivateKey();
	DSAPrivateKey* privKey2 = (DSAPrivateKey*) dsa->newPrivateKey();

	// Reconstruct public and private key #1
	ByteString p1 = "e0a67598cd1b763bc98c8abb333e5dda0cd3aa0e5e1fb5ba8a7b4eabc10ba338fae06dd4b90fda70d7cf0cb0c638be3341bec0af8a7330a3307ded2299a0ee606df035177a239c34a912c202aa5f83b9c4a7cf0235b5316bfc6efb9a248411258b30b839af172440f32563056cb67a861158ddd90e6a894c72a5bbef9e286c6b";
	ByteString q1 = "e950511eab424b9a19a2aeb4e159b7844c589c4f";
	ByteString g1 = "d29d5121b0423c2769ab21843e5a3240ff19cacc792264e3bb6be4f78edd1b15c4dff7f1d905431f0ab16790e1f773b5ce01c804e509066a9919f5195f4abc58189fd9ff987389cb5bedf21b4dab4f8b76a055ffe2770988fe2ec2de11ad92219f0b351869ac24da3d7ba87011a701ce8ee7bfe49486ed4527b7186ca4610a75";
	ByteString x1 = "d0ec4e50bb290a42e9e355c73d8809345de2e139";
	ByteString y1 = "25282217f5730501dd8dba3edfcf349aaffec20921128d70fac44110332201bba3f10986140cbb97c726938060473c8ec97b4731db004293b5e730363609df9780f8d883d8c4d41ded6a2f1e1bbbdc979e1b9d6d3c940301f4e978d65b19041fcf1e8b518f5c0576c770fe5a7a485d8329ee2914a2de1b5da4a6128ceab70f79";

	pubKey1->setP(p1);
	pubKey1->setQ(q1);
	pubKey1->setG(g1);
	pubKey1->setY(y1);
	privKey1->setP(p1);
	privKey1->setQ(q1);
	privKey1->setG(g1);
	privKey1->setX(x1);

	// Test with key #1
	ByteString data1 = "616263"; // "abc"
	ByteString goodSignature1 = "636155ac9a4633b4665d179f9e4117df68601f346c540b02d9d4852f89df8cfc99963204f4347704";
	ByteString badSignature1 = "636155ac9a4633b4665d179f9e4117df68601f346c540b02d9d4852f89df8cfc99963204f4347705";

	// Reconstruct public and private key #2
	ByteString p2 = "f56c2a7d366e3ebdeaa1891fd2a0d099436438a673fed4d75f594959cffebca7be0fc72e4fe67d91d801cba0693ac4ed9e411b41d19e2fd1699c4390ad27d94c69c0b143f1dc88932cfe2310c886412047bd9b1c7a67f8a25909132627f51a0c866877e672e555342bdf9355347dbd43b47156b2c20bad9d2b071bc2fdcf9757f75c168c5d9fc43131be162a0756d1bdec2ca0eb0e3b018a8b38d3ef2487782aeb9fbf99d8b30499c55e4f61e5c7dcee2a2bb55bd7f75fcdf00e48f2e8356bdb59d86114028f67b8e07b127744778aff1cf1399a4d679d92fde7d941c5c85c5d7bff91ba69f9489d531d1ebfa727cfda651390f8021719fa9f7216ceb177bd75";
	ByteString q2 = "c24ed361870b61e0d367f008f99f8a1f75525889c89db1b673c45af5867cb467";
	ByteString g2 = "8dc6cc814cae4a1c05a3e186a6fe27eaba8cdb133fdce14a963a92e809790cba096eaa26140550c129fa2b98c16e84236aa33bf919cd6f587e048c52666576db6e925c6cbe9b9ec5c16020f9a44c9f1c8f7a8e611c1f6ec2513ea6aa0b8d0f72fed73ca37df240db57bbb27431d618697b9e771b0b301d5df05955425061a30dc6d33bb6d2a32bd0a75a0a71d2184f506372abf84a56aeeea8eb693bf29a640345fa1298a16e85421b2208d00068a5a42915f82cf0b858c8fa39d43d704b6927e0b2f916304e86fb6a1b487f07d8139e428bb096c6d67a76ec0b8d4ef274b8a2cf556d279ad267ccef5af477afed029f485b5597739f5d0240f67c2d948a6279";
	ByteString x2 = "0caf2ef547ec49c4f3a6fe6df4223a174d01f2c115d49a6f73437c29a2a8458c";
	ByteString y2 = "2828003d7c747199143c370fdd07a2861524514acc57f63f80c38c2087c6b795b62de1c224bf8d1d1424e60ce3f5ae3f76c754a2464af292286d873a7a30b7eacbbc75aafde7191d9157598cdb0b60e0c5aa3f6ebe425500c611957dbf5ed35490714a42811fdcdeb19af2ab30beadff2907931cee7f3b55532cffaeb371f84f01347630eb227a419b1f3f558bc8a509d64a765d8987d493b007c4412c297caf41566e26faee475137ec781a0dc088a26c8804a98c23140e7c936281864b99571ee95c416aa38ceebb41fdbff1eb1d1dc97b63ce1355257627c8b0fd840ddb20ed35be92f08c49aea5613957d7e5c7a6d5a5834b4cb069e0831753ecf65ba02b";

	pubKey2->setP(p2);
	pubKey2->setQ(q2);
	pubKey2->setG(g2);
	pubKey2->setY(y2);
	privKey2->setP(p2);
	privKey2->setQ(q2);
	privKey2->setG(g2);
	privKey2->setX(x2);

	// Test with key #2
	ByteString data2 = "616263"; // "abc"
	ByteString goodSignature2 = "315c875dcd4850e948b8ac42824e9483a32d5ba5abe0681b9b9448d444f2be3c89718d12e54a8d9ed066e4a55f7ed5a2229cd23b9a3cee78f83ed6aa61f6bcb9";
	ByteString badSignature2 = "315c875dcd4850e948b8ac42824e9483a32d5ba5abe0681b9b9448d444f2be3c89718d12e54a8d9ed066e4a55f7ed5a2229cd23b9a3cee78f83ed6aa61f6bcb8";

	CPPUNIT_ASSERT(dsa->verify(pubKey1, data1, goodSignature1, AsymMech::DSA_SHA1));
	CPPUNIT_ASSERT(!dsa->verify(pubKey1, data1, badSignature1, AsymMech::DSA_SHA1));
	CPPUNIT_ASSERT(dsa->verify(pubKey2, data2, goodSignature2, AsymMech::DSA_SHA256));
	CPPUNIT_ASSERT(!dsa->verify(pubKey2, data2, badSignature2, AsymMech::DSA_SHA256));

	dsa->recyclePublicKey(pubKey1);
	dsa->recyclePublicKey(pubKey2);
	dsa->recyclePrivateKey(privKey1);
	dsa->recyclePrivateKey(privKey2);
}