**5. VNF Modeling Requirements** ===================================== a. TOSCA YAML ============= Introduction ------------- This reference document is the VNF TOSCA Template Requirements for OpenO, which provides recommendations and standards for building VNF TOSCA templates compatible with OpenO– initial implementations of Network Cloud. It has the following features: 1. VNF TOSCA template designer supports GUI and CLI. 2. VNF TOSCA template is aligned to the newest TOSCA protocol, “Working Draft 04-Revision 06”. 3. VNF TOSCA template supports EPA features, such as NUMA, Hyper Threading, SRIOV, etc. Intended Audience ----------------- This document is intended for persons developing VNF TOSCA templates that will be orchestrated by OpenO. Scope ------ OpenO implementations of Network Cloud supports TOSCA Templates, also referred to as TOSCA in this document. OpenO requires the TOSCA Templates to follow a specific format. This document provides the mandatory, recommended, and optional requirements associated with this format. Overview --------- The document includes three charters to help the VNF vendors to use the VNF model design tools and understand the VNF package structure and VNF TOSCA templates. In the OPENO, VNF Package and VNFD template can be designed by manually or via model designer tools. VNF model designer tools can provide the GUI and CLI tools for the VNF vendor to develop the VNF Package and VNFD template. The VNF package structure is align to the NFV TOSCA protocol, and supports CSAR The VNFD and VNF package are all align to the NFV TOSCA protocol, which supports multiple TOSCA template yaml files, and also supports self-defined node or other extensions. NFV TOSCA Template ------------------ TOSCA templates supported by OPENO must follow the requirements enumerated in this section. TOSCA Introduction ------------------ TOSCA defines a Meta model for defining IT services. This Meta model defines both the structure of a service as well as how to manage it. A Topology Template (also referred to as the topology model of a service) defines the structure of a service. Plans define the process models that are used to create and terminate a service as well as to manage a service during its whole lifetime. A Topology Template consists of a set of Node Templates and Relationship Templates that together define the topology model of a service as a (not necessarily connected) directed graph. A node in this graph is represented by a *Node Template*. A Node Template specifies the occurrence of a Node Type as a component of a service. A *Node Type* defines the properties of such a component (via *Node Type Properties*) and the operations (via *Interfaces*) available to manipulate the component. Node Types are defined separately for reuse purposes and a Node Template references a Node Type and adds usage constraints, such as how many times the component can occur. |image1| Figure 1: Structural Elements of Service Template and their Relations TOSCA Modeling Principles & Data Model -------------------------------------- This section describing TOSCA modeling principles and data model for NFV, which shall be based on [TOSCA-1.0] and [TOSCA-Simple-Profile-YAML V1.0], or new type based on ETSI NFV requirements, etc. VNF Descriptor Template ----------------------- The VNF Descriptor (VNFD) describes the topology of the VNF by means of ETSI NFV IFA011 [IFA011] terms such as VDUs, Connection Points, Virtual Links, External Connection Points, Scaling Aspects, Instantiation Levels and Deployment Flavours. The VNFD (VNF Descriptor) is read by both the NFVO and the VNFM. It represents the contract & interface of a VNF and ensures the interoperability across the NFV functional blocks. The main parts of the VNFD are the following: - VNF topology: it is modeled in a cloud agnostic way using virtualized containers and their connectivity. Virtual Deployment Units (VDU) describe the capabilities of the virtualized containers, such as virtual CPU, RAM, disks; their connectivity is modeled with VDU Connection Point Descriptors (VduCpd), Virtual Link Descriptors (Vld) and VNF External Connection Point Descriptors (VnfExternalCpd); - VNF deployment aspects: they are described in one or more deployment flavours, including instantiation levels, supported LCM operations, VNF LCM operation configuration parameters, placement constraints (affinity / antiaffinity), minimum and maximum VDU instance numbers, and scaling aspect for horizontal scaling. The following table defines the TOSCA Type “derived from” values that SHALL be used when using the TOSCA Simple Profile for NFV version 1.0 specification [TOSCA-Simple-Profile-NFV-v1.0] for NFV VNFD. +-----------------------------------------+---------------------------------------+-----------------------+ | **ETSI NFV Element** | **TOSCA VNFD** | **Derived from** | | | | | | **[IFA011]** | **[TOSCA-Simple-Profile-NFV-v1.0]** | | +=========================================+=======================================+=======================+ | VNF | tosca.nodes.nfv.VNF | tosca.nodes.Root | +-----------------------------------------+---------------------------------------+-----------------------+ | VDU | tosca.nodes.nfv.VDU | tosca.nodes.Root | +-----------------------------------------+---------------------------------------+-----------------------+ | Cpd (Connection Point) | tosca.nodes.nfv.Cpd | tosca.nodes.Root | +-----------------------------------------+---------------------------------------+-----------------------+ | VduCpd (internal connection point) | tosca.nodes.nfv.VduCpd | tosca.nodes.nfv.Cpd | +-----------------------------------------+---------------------------------------+-----------------------+ | VnfVirtualLinkDesc (Virtual Link) | tosca.nodes.nfv.VnfVirtualLinkDesc | tosca.nodes.Root | +-----------------------------------------+---------------------------------------+-----------------------+ | VnfExtCpd (External Connection Point) | tosca.nodes.nfv.VnfExtCpd | tosca.nodes.Root | +-----------------------------------------+---------------------------------------+-----------------------+ | Virtual Storage | | | +-----------------------------------------+---------------------------------------+-----------------------+ | Virtual Compute | | | +-----------------------------------------+---------------------------------------+-----------------------+ | Software Image | | | +-----------------------------------------+---------------------------------------+-----------------------+ | Deployment Flavour | | | +-----------------------------------------+---------------------------------------+-----------------------+ | Scaling Aspect | | | +-----------------------------------------+---------------------------------------+-----------------------+ | Element Group | | | +-----------------------------------------+---------------------------------------+-----------------------+ | Instantiation Level | | | +-----------------------------------------+---------------------------------------+-----------------------+ +--------------------------------------------------------------------+ | +--------------------------------------------------------------+ | | | tosca\_definitions\_version: tosca\_simple\_yaml\_1\_0 | | | | | | | | description: VNFD TOSCA file demo | | | | | | | | imports: | | | | | | | | - TOSCA\_definition\_nfv\_1\_0.yaml | | | | | | | | - TOSCA\_definition\_nfv\_ext\_1\_0.yaml | | | | | | | | | **node\_types: | | | | tosca.nodes.nfv.VNF.vOpenNAT: | | | | derived\_from:** tosca.nodes.nfv.VNF | | | | | **requirements: | | | | **- **sriov\_plane: | | | | capability:** tosca.capabilities.nfv.VirtualLinkable | | | | | **node:** tosca.nodes.nfv.VnfVirtualLinkDesc | | | | | **relationship:** tosca.relationships.nfv.VirtualLinksTo | | | +--------------------------------------------------------------+ | +====================================================================+ +--------------------------------------------------------------------+ EPA Requirements ---------------- 1. SR-IOV Passthrought Definitions of SRIOV\_Port are necessary if VDU supports SR-IOV. Here is an example. +------------------------------------------------+ | node\_templates: | | | | vdu\_vNat: | | | | SRIOV\_Port: | | | | attributes: | | | | tosca\_name: SRIOV\_Port | | | | properties: | | | | virtual\_network\_interface\_requirements: | | | | - name: sriov | | | | support\_mandatory: false | | | | description: sriov | | | | requirement: | | | | SRIOV: true | | | | role: root | | | | description: sriov port | | | | layer\_protocol: ipv4 | | | | requirements: | | | | - virtual\_binding: | | | | capability: virtual\_binding | | | | node: vdu\_vNat | | | | relationship: | | | | type: tosca.relationships.nfv.VirtualBindsTo | | | | - virtual\_link: | | | | node: tosca.nodes.Root | | | | type: tosca.nodes.nfv.VduCpd | | | | substitution\_mappings: | | | | requirements: | | | | sriov\_plane: | | | | - SRIOV\_Port | | | | - virtual\_link | | | | node\_type: tosca.nodes.nfv.VNF.vOpenNAT | +------------------------------------------------+ 2. Hugepages Definitions of mem\_page\_size as one property shall be added to Properties and set the value to large if one VDU node supports huagepages. Here is an example. +----------------------------------+ | node\_templates: | | | | vdu\_vNat: | | | | Hugepages: | | | | attributes: | | | | tosca\_name: Huge\_pages\_demo | | | | properties: | | | | mem\_page\_size:large | +==================================+ +----------------------------------+ 3. NUMA (CPU/Mem) Likewise, we shall add definitions of numa to requested\_additional\_capabilities if we wand VUD nodes to support NUMA. Here is an example. +-------------------------------------------------+ | topology\_template: | | | | node\_templates: | | | | vdu\_vNat: | | | | capabilities: | | | | virtual\_compute: | | | | properties: | | | | virtual\_memory: | | | | numa\_enabled: true | | | | virtual\_mem\_size: 2 GB | | | | requested\_additional\_capabilities: | | | | numa: | | | | support\_mandatory: true | | | | requested\_additional\_capability\_name: numa | | | | target\_performance\_parameters: | | | | hw:numa\_nodes: "2" | | | | hw:numa\_cpus.0: "0,1" | | | | hw:numa\_mem.0: "1024" | | | | hw:numa\_cpus.1: "2,3,4,5" | | | | hw:numa\_mem.1: "1024" | +-------------------------------------------------+ 4. Hyper-Theading Definitions of Hyper-Theading are necessary as one of requested\_additional\_capabilities of one VUD node if that node supports Hyper-Theading. Here is an example. +-------------------------------------------------------------+ | topology\_template: | | | | node\_templates: | | | | vdu\_vNat: | | | | capabilities: | | | | virtual\_compute: | | | | properties: | | | | virtual\_memory: | | | | numa\_enabled: true | | | | virtual\_mem\_size: 2 GB | | | | requested\_additional\_capabilities: | | | | hyper\_threading: | | | | support\_mandatory: true | | | | requested\_additional\_capability\_name: hyper\_threading | | | | target\_performance\_parameters: | | | | hw:cpu\_sockets : "2" | | | | hw:cpu\_threads : "2" | | | | hw:cpu\_cores : "2" | | | | hw:cpu\_threads\_policy: "isolate" | +-------------------------------------------------------------+ 5. OVS+DPDK Definitions of ovs\_dpdk are necessary as one of requested\_additional\_capabilities of one VUD node if that node supports dpdk. Here is an example. +------------------------------------------------------+ | topology\_template: | | | | node\_templates: | | | | vdu\_vNat: | | | | capabilities: | | | | virtual\_compute: | | | | properties: | | | | virtual\_memory: | | | | numa\_enabled: true | | | | virtual\_mem\_size: 2 GB | | | | requested\_additional\_capabilities: | | | | ovs\_dpdk: | | | | support\_mandatory: true | | | | requested\_additional\_capability\_name: ovs\_dpdk | | | | target\_performance\_parameters: | | | | sw:ovs\_dpdk: "true" | +------------------------------------------------------+ NFV TOSCA Type Definition ------------------------- tosca.capabilites.nfv.VirtualCompute ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +---------------------------+-----------------------------------------+ | **Shorthand Name** | VirtualCompute | +===========================+=========================================+ | **Type Qualified Name** | tosca: VirtualCompute | +---------------------------+-----------------------------------------+ | **Type URI** | tosca.capabilities.nfv.VirtualCompute | +---------------------------+-----------------------------------------+ | **derived from** | tosca.nodes.Root | +---------------------------+-----------------------------------------+ Properties ^^^^^^^^^^ +-------------------------------------+------------+-----------------------------------------------------+---------------+---------------------------------------------------------+ | Name | Required | Type | Constraints | Description | +=====================================+============+=====================================================+===============+=========================================================+ | request\_additional\_capabilities | No | tosca.datatypes.nfv.RequestedAdditionalCapability | | Describes additional capability for a particular VDU. | +-------------------------------------+------------+-----------------------------------------------------+---------------+---------------------------------------------------------+ | virtual\_memory | yes | tosca.datatypes.nfv.VirtualMemory | | Describes virtual memory of the virtualized compute | +-------------------------------------+------------+-----------------------------------------------------+---------------+---------------------------------------------------------+ | virtual\_cpu | yes | tosca.datatypes.nfv.VirtualCpu | | Describes virtual CPU(s) of the virtualized compute. | +-------------------------------------+------------+-----------------------------------------------------+---------------+---------------------------------------------------------+ +-------------------------------------+------------+-----------------------------------------------------+---------------+---------------------------------------------------------+ | name | yes | | | | +-------------------------------------+------------+-----------------------------------------------------+---------------+---------------------------------------------------------+ Definition ^^^^^^^^^^ +-----------------------------------------------------------+ | tosca.capabilities.nfv.VirtualCompute: | | | | derived\_from: tosca.capabilities.Root | | | | properties: | | | | requested\_additional\_capabilities: | | | | type: map | | | | entry\_schema: | | | | type: tosca.datatypes.nfv.RequestedAdditionalCapability | | | | required: false | | | | virtual\_memory: | | | | type: tosca.datatypes.nfv.VirtualMemory | | | | required: true | | | | virtual\_cpu: | | | | type: tosca.datatypes.nfv.VirtualCpu | | | | required: true | +-----------------------------------------------------------+ tosca.nodes.nfv.VDU.Compute ~~~~~~~~~~~~~~~~~~~~~~~~~~~ The NFV Virtualization Deployment Unit (VDU) compute node type represents a VDU entity which it describes the deployment and operational behavior of a VNF component (VNFC), as defined by **[ETSI NFV IFA011].** +-----------------------+-------------------------------+ | Shorthand Name | VDU.Compute | +=======================+===============================+ | Type Qualified Name | tosca:VDU.Compute | +-----------------------+-------------------------------+ | Type URI | tosca.nodes.nfv.VDU.Compute | +-----------------------+-------------------------------+ | derived\_from | tosca.nodes.Compute | +-----------------------+-------------------------------+ Attributes ^^^^^^^^^^ None Capabilities ^^^^^^^^^^^^ +-------------------------+-------------------------------------------------+---------------+-----------------------------------------------------------------------------------------------------+ | Name | Type | Constraints | Description | +=========================+=================================================+===============+=====================================================================================================+ | virtual\_compute | tosca.capabilities.nfv.VirtualCompute | | Describes virtual compute resources capabilities. | +-------------------------+-------------------------------------------------+---------------+-----------------------------------------------------------------------------------------------------+ | monitoring\_parameter | tosca.capabilities.nfv.Metric | None | Monitoring parameter, which can be tracked for a VNFC based on this VDU | | | | | | | | | | Examples include: memory-consumption, CPU-utilisation, bandwidth-consumption, VNFC downtime, etc. | +-------------------------+-------------------------------------------------+---------------+-----------------------------------------------------------------------------------------------------+ | Virtual\_binding | tosca.capabilities.nfv.VirtualBindable | | Defines ability of VirtualBindable | | | | | | | | editor note: need to create a capability type | | | +-------------------------+-------------------------------------------------+---------------+-----------------------------------------------------------------------------------------------------+ Definition ^^^^^^^^^^ +-----------------------------------------------------------------------------------------------------+ | tosca.nodes.nfv.VDU.Compute: | | | | derived\_from: tosca.nodes.Compute | | | | properties: | | | | name: | | | | type: string | | | | required: true | | | | description: | | | | type: string | | | | required: true | | | | boot\_order: | | | | type: list # explicit index (boot index) not necessary, contrary to IFA011 | | | | entry\_schema: | | | | type: string | | | | required: false | | | | nfvi\_constraints: | | | | type: list | | | | entry\_schema: | | | | type: string | | | | required: false | | | | configurable\_properties: | | | | type: map | | | | entry\_schema: | | | | type: tosca.datatypes.nfv.VnfcConfigurableProperties | | | | required: true  | | | | attributes: | | | | private\_address: | | | | status: deprecated | | | | public\_address: | | | | status: deprecated | | | | networks: | | | | status: deprecated | | | | ports: | | | | status: deprecated | | | | capabilities: | | | | virtual\_compute: | | | | type: tosca.capabilities.nfv.VirtualCompute | | | | virtual\_binding: | | | | type: tosca.capabilities.nfv.VirtualBindable | | | | #monitoring\_parameter: | | | | # modeled as ad hoc (named) capabilities in VDU node template | | | | # for example: | | | | #capabilities: | | | | # cpu\_load: tosca.capabilities.nfv.Metric | | | | # memory\_usage: tosca.capabilities.nfv.Metric | | | | host: #Editor note: FFS. How this capabilities should be used in NFV Profile | | | | type: `*tosca.capabilities.Container* <#DEFN_TYPE_CAPABILITIES_CONTAINER>`__ | | | | valid\_source\_types: [`*tosca.nodes.SoftwareComponent* <#DEFN_TYPE_NODES_SOFTWARE_COMPONENT>`__] | | | | occurrences: [0,UNBOUNDED] | | | | endpoint: | | | | occurrences: [0,0] | | | | os: | | | | occurrences: [0,0] | | | | scalable: #Editor note: FFS. How this capabilities should be used in NFV Profile | | | | type: `*tosca.capabilities.Scalable* <#DEFN_TYPE_CAPABILITIES_SCALABLE>`__ | | | | binding: | | | | occurrences: [0,UNBOUND] | | | | requirements: | | | | - virtual\_storage: | | | | capability: tosca.capabilities.nfv.VirtualStorage | | | | relationship: tosca.relationships.nfv.VDU.AttachedTo | | | | node: tosca.nodes.nfv.VDU.VirtualStorage | | | | occurences: [ 0, UNBOUNDED ] | | | | - local\_storage: #For NFV Profile, this requirement is deprecated. | | | | occurrences: [0,0] | | | | artifacts: | | | | - sw\_image: | | | | file: | | | | type: tosca.artifacts.nfv.SwImage | +-----------------------------------------------------------------------------------------------------+ Artifact ^^^^^^^^ +-----------+------------+-------------------------------+---------------+------------------------------------------------+ | Name | Required | Type | Constraints | Description | +===========+============+===============================+===============+================================================+ | SwImage | Yes | tosca.artifacts.nfv.SwImage | | Describes the software image which is | | | | | | directly realizing this virtual storage | +-----------+------------+-------------------------------+---------------+------------------------------------------------+ |image2| tosca.nodes.nfv.Cpd ~~~~~~~~~~~~~~~~~~~ The TOSCA Cpd node represents network connectivity to a compute resource or a VL as defined by [ETSI GS NFV-IFA 011]. This is an abstract type used as parent for the various Cpd types. +-----------------------+-----------------------+ | Shorthand Name | Cpd | +=======================+=======================+ | Type Qualified Name | tosca:Cpd | +-----------------------+-----------------------+ | Type URI | tosca.nodes.nfv.Cpd | +-----------------------+-----------------------+ Attributes ^^^^^^^^^^ +--------+------------+--------+---------------+---------------+ | Name | Required | Type | Constraints | Description | +========+============+========+===============+===============+ +--------+------------+--------+---------------+---------------+ Requirements ^^^^^^^^^^^^ None Capabilities ^^^^^^^^^^^^ None Definition ^^^^^^^^^^ +----------------------------------------------------------------------+ | tosca.nodes.nfv.Cpd: | | | | derived\_from: tosca.nodes.Root | | | | properties: | | | | layer\_protocol: | | | | type:string | | | | constraints: | | | | - valid\_values: [ethernet, mpls, odu2, ipv4, ipv6, pseudo\_wire ] | | | | required:true | | | | role: #Name in ETSI NFV IFA011 v0.7.3 cpRole | | | | type:string | | | | constraints: | | | | - valid\_values: [ root, leaf ] | | | | required:flase | | | | description: | | | | type: string | | | | required: false | | | | address\_data: | | | | type: list | | | | entry\_schema: | | | | type: tosca.datatype.nfv.AddressData | | | | required:false | +----------------------------------------------------------------------+ Additional Requirement ^^^^^^^^^^^^^^^^^^^^^^ None. tosca.nodes.nfv.VduCpd ~~~~~~~~~~~~~~~~~~~~~~ The TOSCA node VduCpd represents a type of TOSCA Cpd node and describes network connectivity between a VNFC instance (based on this VDU) and an internal VL as defined by [ETSI GS NFV-IFA 011]. +-----------------------+--------------------------+ | Shorthand Name | VduCpd | +=======================+==========================+ | Type Qualified Name | tosca: VduCpd | +-----------------------+--------------------------+ | Type URI | tosca.nodes.nfv.VduCpd | +-----------------------+--------------------------+ Properties ^^^^^^^^^^ +-------------------------------+------------+------------------------------------------+---------------+----------------------------------------------------------+ | Name | Required | Type | Constraints | Description | +===============================+============+==========================================+==========================================================================+ | bitrate_requirement | no | integer | | Bitrate requirement on this connection point. | +-------------------------------+------------+------------------------------------------+---------------+----------------------------------------------------------+ | virtual\_network\_interface_\ | no | VirtualNetworkInterfaceRequirements | | Specifies requirements on a virtual network | | requirements | | | | realising the CPs instantiated from this CPD | +-------------------------------+------------+------------------------------------------+---------------+----------------------------------------------------------+ Attributes ^^^^^^^^^^ None Requirements ^^^^^^^^^^^^ +--------------------+------------+------------------------------------------+---------------+----------------------------------------------------------+ | Name | Required | Type | Constraints | Description | +====================+============+==========================================+===============+==========================================================+ | virtual\_binding | yes | tosca.capabilities.nfv.VirtualBindable | | Describe the requirement for binding with VDU | +--------------------+------------+------------------------------------------+---------------+----------------------------------------------------------+ | virtual\_link | no | tosca.capabilities.nfv.VirtualLinkable | | Describes the requirements for linking to virtual link | +--------------------+------------+------------------------------------------+---------------+----------------------------------------------------------+ Definition ^^^^^^^^^^ +----------------------------------------------------------------+ | tosca.nodes.nfv.VduCpd: | | | | derived\_from: tosca.nodes.nfv.Cpd | | | | properties: | | | | bitrate\_requirement: | | | | type: integer | | | | required:false | | | | virtual\_network\_interface\_requirements | | | | type: list | | | | entry\_schema: | | | | type: VirtualNetworkInterfaceRequirements | | | | required:false | | | | requirements: | | | | - virtual\_link: | | | | capability: tosca.capabilities.nfv.VirtualLinkable | | | | relationship: tosca.relationships.nfv.VirtualLinksTo | | | | node: tosca.nodes.nfv.VnfVirtualLinkDesc - virtual\_binding: | | | | capability: tosca.capabilities.nfv.VirtualBindable | | | | relationship: tosca.relationships.nfv.VirtualBindsTo | | | | node: tosca.nodes.nfv.VDU | +----------------------------------------------------------------+ tosca.nodes.nfv.VDU.VirtualStorage ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The NFV VirtualStorage node type represents a virtual storage entity which it describes the deployment and operational behavior of a virtual storage resources, as defined by **[ETSI NFV IFA011].** **[editor note]** open issue: should NFV profile use the current storage model as described in YAML 1.1. Pending on Shitao proposal (see NFVIFA(17)000110 discussion paper) **[editor note]** new relationship type as suggested in Matt presentation. Slide 8. With specific rules of “valid\_target\_type” +---------------------------+--------------------------------------+ | **Shorthand Name** | VirtualStorage | +===========================+======================================+ | **Type Qualified Name** | tosca: VirtualStorage | +---------------------------+--------------------------------------+ | **Type URI** | tosca.nodes.nfv.VDU.VirtualStorage | +---------------------------+--------------------------------------+ | **derived\_from** | tosca.nodes.Root | +---------------------------+--------------------------------------+ tosca.artifacts.nfv.SwImage ~~~~~~~~~~~~~~~~~~~~~~~~~~~ +---------------------------+------------------------------------+ | **Shorthand Name** | SwImage | +===========================+====================================+ | **Type Qualified Name** | tosca:SwImage | +---------------------------+------------------------------------+ | **Type URI** | tosca.artifacts.nfv.SwImage | +---------------------------+------------------------------------+ | **derived\_from** | tosca.artifacts.Deployment.Image | +---------------------------+------------------------------------+ Properties ^^^^^^^^^^ +------------------------------------------+------------+--------------------+---------------+----------------------------------------------------------------------------------------------------+ | Name | Required | Type | Constraints | Description | +==========================================+============+====================+===============+====================================================================================================+ | name | yes | string | | Name of this software image | +------------------------------------------+------------+--------------------+---------------+----------------------------------------------------------------------------------------------------+ | version | yes | string | | Version of this software image | +------------------------------------------+------------+--------------------+---------------+----------------------------------------------------------------------------------------------------+ | checksum | yes | string | | Checksum of the software image file | +------------------------------------------+------------+--------------------+---------------+----------------------------------------------------------------------------------------------------+ | container\_format | yes | string | | The container format describes the container file format in which software image is provided. | +------------------------------------------+------------+--------------------+---------------+----------------------------------------------------------------------------------------------------+ | disk\_format | yes | string | | The disk format of a software image is the format of the underlying disk image | +------------------------------------------+------------+--------------------+---------------+----------------------------------------------------------------------------------------------------+ | min\_disk | yes | scalar-unit.size | | The minimal disk size requirement for this software image. | +------------------------------------------+------------+--------------------+---------------+----------------------------------------------------------------------------------------------------+ | min\_ram | no | scalar-unit.size | | The minimal RAM requirement for this software image. | +------------------------------------------+------------+--------------------+---------------+----------------------------------------------------------------------------------------------------+ | Size | yes | scalar-unit.size | | The size of this software image | +------------------------------------------+------------+--------------------+---------------+----------------------------------------------------------------------------------------------------+ | sw\_image | yes | string | | A reference to the actual software image within VNF Package, or url. | +------------------------------------------+------------+--------------------+---------------+----------------------------------------------------------------------------------------------------+ | operating\_system | no | string | | Identifies the operating system used in the software image. | +------------------------------------------+------------+--------------------+---------------+----------------------------------------------------------------------------------------------------+ | supported \_virtualization\_enviroment | no | list | | Identifies the virtualization environments (e.g. hypervisor) compatible with this software image | +------------------------------------------+------------+--------------------+---------------+----------------------------------------------------------------------------------------------------+ Definition ^^^^^^^^^^ +-----------------------------------------------------+ | tosca.artifacts.nfv.SwImage: | | | |   derived\_from: tosca.artifacts.Deployment.Image | | | |   properties or metadata: | | | |     #id: | | | |       # node name | | | |     name: | | | |       type: string | | | | required: true | | | |     version: | | | |       type: string | | | | required: true | | | |     checksum: | | | |       type: string | | | | required: true | | | |     container\_format: | | | |       type: string | | | | required: true | | | |     disk\_format: | | | |       type: string | | | | required: true | | | |     min\_disk: | | | |       type: scalar-unit.size # Number | | | | required: true | | | |     min\_ram: | | | |       type: scalar-unit.size # Number | | | | required: false | | | |     size: | | | |       type: scalar-unit.size # Number | | | | required: true | | | |     sw\_image: | | | |       type: string | | | | required: true | | | |     operating\_system: | | | |       type: string | | | | required: false | | | |     supported\_virtualisation\_environments: | | | |       type: list | | | |       entry\_schema: | | | |         type: string | | | | required: false | +-----------------------------------------------------+ vNAT Example ------------ openovnf\_\_vOpenNAT.yaml ~~~~~~~~~~~~~~~~~~~~~~~~~ +-------------------------------------------------------------+ | imports: | | | | - openonfv\_\_tosca.capabilities.Scalable.yaml | | | | - openonfv\_\_tosca.capabilities.nfv.Metric.yaml | | | | - openonfv\_\_tosca.capabilities.network.Bindable.yaml | | | | - openonfv\_\_tosca.capabilities.Attachment.yaml | | | | - openonfv\_\_tosca.capabilities.nfv.VirtualBindable.yaml | | | | - openonfv\_\_tosca.requirements.nfv.VirtualStorage.yaml | | | | - openonfv\_\_tosca.nodes.nfv.VDU.VirtualStorage.yaml | | | | - openonfv\_\_tosca.relationships.nfv.VirtualBindsTo.yaml | | | | - openonfv\_\_tosca.nodes.nfv.VDU.Compute.yaml | | | | - openonfv\_\_tosca.artifacts.nfv.SwImage.yaml | | | | - openonfv\_\_tosca.capabilities.nfv.VirtualCompute.yaml | | | | - openonfv\_\_tosca.capabilities.Container.yaml | | | | - openonfv\_\_tosca.capabilities.nfv.VirtualStorage.yaml | | | | - openonfv\_\_tosca.requirements.nfv.VirtualBinding.yaml | | | | - openovnf\_\_tosca.nodes.nfv.VNF.vOpenNAT.yaml | | | | - openonfv\_\_tosca.capabilities.Endpoint.Admin.yaml | | | | - openonfv\_\_tosca.capabilities.OperatingSystem.yaml | | | | - openonfv\_\_tosca.nodes.nfv.VduCpd.yaml | | | | - openonfv\_\_tosca.relationships.nfv.VDU.AttachedTo.yaml | | | | metadata: | | | | vnfProductName: openNAT | | | | vnfdVersion: 1.0.0 | | | | vnfProvider: intel | | | | vnfmInfo: GVNFM | | | | csarVersion: 1.0.0 | | | | vnfdId: openNAT-1.0 | | | | csarProvider: intel | | | | vnfProductInfoDescription: openNAT | | | | version: 1.0.0 | | | | csarType: NFAR | | | | vendor: intel | | | | localizationLanguage: '[english, chinese]' | | | | id: openNAT-1.0 | | | | defaultLocalizationLanguage: english | | | | vnfProductInfoName: openNAT | | | | vnfSoftwareVersion: 1.0.0 | | | | topology\_template: | | | | node\_templates: | | | | vdu\_vNat: | | | | artifacts: | | | | vNatVNFImage: | | | | file: /swimages/xenial-snat.qcow2 | | | | type: tosca.artifacts.nfv.SwImage | | | | properties: | | | | name: vNatVNFImage | | | | version: "1.0" | | | | checksum: "5000" | | | | container\_format: bare | | | | disk\_format: qcow2 | | | | min\_disk: 10 GB | | | | min\_ram: 1 GB | | | | size: 10 GB | | | | sw\_image: /swimages/xenial-snat.qcow2 | | | | operating\_system: unbantu | | | | attributes: | | | | tosca\_name: vdu\_vNat | | | | capabilities: | | | | virtual\_compute: | | | | properties: | | | | virtual\_memory: | | | | numa\_enabled: true | | | | virtual\_mem\_size: 2 GB | | | | requested\_additional\_capabilities: | | | | numa: | | | | support\_mandatory: true | | | | requested\_additional\_capability\_name: numa | | | | target\_performance\_parameters: | | | | hw:numa\_nodes: "2" | | | | hw:numa\_cpus.0: "0,1" | | | | hw:numa\_mem.0: "1024" | | | | hw:numa\_cpus.1: "2,3,4,5" | | | | hw:numa\_mem.1: "1024" | | | | hyper\_threading: | | | | support\_mandatory: true | | | | requested\_additional\_capability\_name: hyper\_threading | | | | target\_performance\_parameters: | | | | hw:cpu\_sockets : "2" | | | | hw:cpu\_threads : "2" | | | | hw:cpu\_cores : "2" | | | | hw:cpu\_threads\_policy: "isolate" | | | | ovs\_dpdk: | | | | support\_mandatory: true | | | | requested\_additional\_capability\_name: ovs\_dpdk | | | | target\_performance\_parameters: | | | | sw:ovs\_dpdk: "true" | | | | virtual\_cpu: | | | | cpu\_architecture: X86 | | | | num\_virtual\_cpu: 2 | | | | properties: | | | | configurable\_properties: | | | | test: | | | | additional\_vnfc\_configurable\_properties: | | | | aaa: 1 | | | | name: vNat | | | | descrption: the virtual machine of vNat | | | | boot\_order: | | | | - vNAT\_Storage | | | | requirements: | | | | - virtual\_storage: | | | | capability: virtual\_storage | | | | node: vNAT\_Storage | | | | relationship: | | | | properties: | | | | location: /mnt/volume\_0 | | | | type: tosca.relationships.nfv.VDU.AttachedTo | | | | - local\_storage: | | | | node: tosca.nodes.Root | | | | type: tosca.nodes.nfv.VDU.Compute | | | | SRIOV\_Port: | | | | attributes: | | | | tosca\_name: SRIOV\_Port | | | | properties: | | | | virtual\_network\_interface\_requirements: | | | | - name: sriov | | | | support\_mandatory: false | | | | description: sriov | | | | requirement: | | | | SRIOV: true | | | | role: root | | | | description: sriov port | | | | layer\_protocol: ipv4 | | | | requirements: | | | | - virtual\_binding: | | | | capability: virtual\_binding | | | | node: vdu\_vNat | | | | relationship: | | | | type: tosca.relationships.nfv.VirtualBindsTo | | | | - virtual\_link: | | | | node: tosca.nodes.Root | | | | type: tosca.nodes.nfv.VduCpd | | | | vNAT\_Storage: | | | | attributes: | | | | tosca\_name: vNAT\_Storage | | | | properties: | | | | id: vNAT\_Storage | | | | size\_of\_storage: 10 GB | | | | rdma\_enabled: false | | | | type\_of\_storage: volume | | | | type: tosca.nodes.nfv.VDU.VirtualStorage | | | | substitution\_mappings: | | | | requirements: | | | | sriov\_plane: | | | | - SRIOV\_Port | | | | - virtual\_link | | | | node\_type: tosca.nodes.nfv.VNF.vOpenNAT | | | | tosca\_definitions\_version: tosca\_simple\_yaml\_1\_0 | +-------------------------------------------------------------+ openonfv\_\_tosca.nodes.nfv.VDU.VirtualStorage.yaml ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +------------------------------------------------------------+ | imports: | | | | - openonfv\_\_tosca.capabilities.nfv.VirtualStorage.yaml | | | | node\_types: | | | | tosca.nodes.nfv.VDU.VirtualStorage: | | | | capabilities: | | | | virtual\_storage: | | | | type: tosca.capabilities.nfv.VirtualStorage | | | | derived\_from: tosca.nodes.Root | | | | properties: | | | | id: | | | | type: string | | | | size\_of\_storage: | | | | type: string | | | | rdma\_enabled: | | | | required: false | | | | type: boolean | | | | type\_of\_storage: | | | | type: string | | | | tosca\_definitions\_version: tosca\_simple\_yaml\_1\_0 | +------------------------------------------------------------+ openonfv\_\_tosca.nodes.nfv.VduCpd.yaml ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +-----------------------------------------------------------------+ | data\_types: | | | | tosca.datatypes.nfv.L3AddressData: | | | | properties: | | | | number\_of\_ip\_address: | | | | required: false | | | | type: integer | | | | ip\_address\_assignment: | | | | type: boolean | | | | ip\_address\_type: | | | | constraints: | | | | - valid\_values: | | | | - ipv4 | | | | - ipv6 | | | | required: false | | | | type: string | | | | floating\_ip\_activated: | | | | type: string | | | | tosca.datatypes.nfv.VirtualNetworkInterfaceRequirements: | | | | properties: | | | | name: | | | | required: false | | | | type: string | | | | support\_mandatory: | | | | type: boolean | | | | description: | | | | required: false | | | | type: string | | | | requirement: | | | | entry\_schema: | | | | type: string | | | | type: map | | | | tosca.datatype.nfv.AddressData: | | | | properties: | | | | address\_type: | | | | constraints: | | | | - valid\_values: | | | | - mac\_address | | | | - ip\_address | | | | type: string | | | | l2\_address\_data: | | | | required: false | | | | type: tosca.datatypes.nfv.L2AddressData | | | | l3\_address\_data: | | | | required: false | | | | type: tosca.datatypes.nfv.L3AddressData | | | | tosca.datatypes.nfv.L2AddressData: {} | | | | imports: | | | | - openonfv\_\_tosca.requirements.nfv.VirtualBinding.yaml | | | | - openonfv\_\_tosca.requirements.nfv.VirtualBinding.yaml | | | | node\_types: | | | | tosca.nodes.nfv.VduCpd: | | | | derived\_from: tosca.nodes.Root | | | | properties: | | | | virtual\_network\_interface\_requirements: | | | | entry\_schema: | | | | type: tosca.datatypes.nfv.VirtualNetworkInterfaceRequirements | | | | required: false | | | | type: list | | | | role: | | | | constraints: | | | | - valid\_values: | | | | - root | | | | - leaf | | | | required: false | | | | type: string | | | | bitrate\_requirement: | | | | required: false | | | | type: integer | | | | description: | | | | required: false | | | | type: string | | | | layer\_protocol: | | | | constraints: | | | | - valid\_values: | | | | - ethernet | | | | - mpls | | | | - odu2 | | | | - ipv4 | | | | - ipv6 | | | | - pseudo\_wire | | | | type: string | | | | address\_data: | | | | entry\_schema: | | | | type: tosca.datatype.nfv.AddressData | | | | required: false | | | | type: list | | | | requirements: | | | | - virtual\_binding: | | | | capability: tosca.capabilities.nfv.VirtualBindable | | | | occurrences: | | | | - 0 | | | | - UNBOUNDED | | | | - virtual\_link: | | | | capability: tosca.capabilities.nfv.VirtualBindable | | | | occurrences: | | | | - 0 | | | | - UNBOUNDED | | | | tosca\_definitions\_version: tosca\_simple\_yaml\_1\_0 | +-----------------------------------------------------------------+ .. |image1| image:: Image1.png :width: 5.76806in :height: 4.67161in .. |image2| image:: Image2.png :width: 5.40486in :height: 2.46042in b. Heat ======= General Guidelines ------------------ The Heat templates supported by ONAP must follow the requirements enumerated in this section. Filenames --------- In order to enable ONAP to understand the relationship between Heat files, the following Heat file naming convention must be followed. - The file name for the base module Heat template must include “base” in the filename. - Examples: *base\_xyz.yml* or *base\_xyz.yaml*; *xyz\_base.yml* or *xyz\_base.yaml* - There is no explicit naming convention for the add-on modules. - Examples: *module1.yml* or *module1.yaml* - All Cinder volume templates must be named the same as the corresponding Heat template with “\_volume” appended to the file name. - Examples: *base\_xyz\_volume.yml* or *base\_xyz\_volume.yaml*; *xyz\_base\_volume.yml* or *xyz\_base\_volume.yaml*; *module1\_volume.yml* or *module1\_volume.yaml* (referencing the above base module Heat template name) - The file name of the environment files must fully match the corresponding Heat template filename and have *.env* or *.ENV* extension. - Examples: *base\_xyz.env* or *base\_xyz.ENV*; *xyz\_base.env* or *xyz\_base.ENV*; *base\_xyz\_volume.env* or *base\_xyz\_volume.ENV*; *module1.env* or *module1.ENV; module1\_volume.env* or *module1\_volume.ENV* (referencing the above base module Heat template name) - A YAML file must have a corresponding ENV file, even if the ENV file enumerates no parameters. It is an ONAP requirement. Valid YAML Format ------------------ A Heat template (a YAML file and its corresponding environment file) must be formatted in valid YAML. For a description of YAML, refer to the following OpenStack wiki. https://wiki.openstack.org/wiki/Heat/YAMLTemplates A Heat template must follow a specific format. The OpenStack Heat Orchestration Template (HOT) specification explains in detail all elements of the HOT template format. http://docs.openstack.org/developer/heat/template_guide/hot_spec.html Parameter Categories & Specification ------------------------------------ Parameter Categories ~~~~~~~~~~~~~~~~~~~~ ONAP requires the Heat template parameters to follow certain requirements in order for it to be orchestrated or deployed. ONAP classifies parameters into eight broad categories. - **ONAP Metadata**: ONAP mandatory and optional metadata parameters in the resource *OS::Nova::Server*. - ONAP dictates the naming convention of these Metadata parameters and must be adhered to (See Section 5.b, Independent Volume Templates). - Metadata parameters must not be enumerated in the environment file. - The ONAP Metadata are generated and/or assigned by ONAP and supplied to the Heat by ONAP at orchestration time. - **ONAP Orchestration Parameters**: The data associated with these parameters are VNF instance specific. - ONAP enforces the naming convention of these parameters and must be adhered to (See Parameter Naming Convention). - These parameters must not be enumerated in the environment file. - The ONAP Orchestration Parameters are generated and/or assigned by ONAP and supplied to the Heat by ONAP at orchestration time. - **VNF Orchestration Parameters**: The data associated with these parameters are VNF instance specific. - While ONAP does not enforce a naming convention, the parameter names should include {vm-type} and {network-role} when appropriate. (See Parameter Naming Convention) - These parameters must not be enumerated in the environment file. - The VNF Orchestration Parameters Heat are generated and/or assigned by ONAP and supplied to the Heat by ONAP at orchestration time. - **ONAP Orchestration Constants**: The data associated with these parameters must be constant across all VNF instances. - ONAP enforces the naming convention of these parameters and must be adhered to (See Parameter Naming Convention). - These parameters must be enumerated in the environment file. - **VNF Orchestration Constants**: The data associated with these parameters must be constant across all VNF instances. - While ONAP does not enforce a naming convention, the parameter names should include {vm-type} and {network-role} when appropriate. (See Parameter Naming Convention) - These parameters must be enumerated in the environment file. - **ONAP Base Template Output Parameters** (also referred to as Base Template Output Parameters): The output section of the base template allows for specifying output parameters available to add-on modules once the base template has been instantiated. The parameter defined in the output section of the base must be identical to the parameter defined in the add-on module(s) where the parameter is used. - **ONAP Volume Template Output Parameters** (also referred to as Volume Template Output Parameters): The output section of the volume template allows for specifying output parameters available to the corresponding Heat template (base or add-on) once the volume template has been instantiated. The parameter defined in the output section of the volume must be identical to the parameter defined in the base or add-on module. - **ONAP Predefined Output Parameters** (also referred to as Predefined Output Parameters): ONAP will look for a small set of pre-defined Heat output parameters to capture resource attributes for inventory in ONAP. These parameters are specified in Section 5.b Resource Property: name. The table below summarizes the Parameter Types. If the user is orchestrating a manual spin up of Heat (e.g. OpenStack command line), the parameter values that ONAP supplies must be enumerated in the environment file. However, when the Heat is to be loaded into ONAP for orchestration, the parameters that ONAP supplies must be deleted or marked with a comment (i.e., a “#” placed at the beginning of a line). +-----------------------------------------------+---------------------+---------------------------------------------------------------------------------+ | Parameter Type | Naming Convention | Parameter Value Source | +===============================================+=====================+=================================================================================+ | ONAP Metadata | Explicit | ONAP | +-----------------------------------------------+---------------------+---------------------------------------------------------------------------------+ | ONAP Orchestration Parameters | Explicit | ONAP | +-----------------------------------------------+---------------------+---------------------------------------------------------------------------------+ | VNF Orchestration Parameters | Recommended | ONAP | +-----------------------------------------------+---------------------+---------------------------------------------------------------------------------+ | ONAP Orchestration Constants | Explicit | Environment File | +-----------------------------------------------+---------------------+---------------------------------------------------------------------------------+ | VNF Orchestration Constants | Recommended | Environment File | +-----------------------------------------------+---------------------+---------------------------------------------------------------------------------+ | ONAP Base Template Output Parameters | Recommended | Heat Output Statement for base, ONAP supplied to add-on modules | +-----------------------------------------------+---------------------+---------------------------------------------------------------------------------+ | ONAP Volume Template Output Parameters | Recommended | Heat Output Statement for volume, OpeneECOMP supplies to corresponding module | +-----------------------------------------------+---------------------+---------------------------------------------------------------------------------+ | ONAP Predefined Output Parameters | Explicit | Heat Output Statement | +-----------------------------------------------+---------------------+---------------------------------------------------------------------------------+ Table 1 Parameter Types Parameter Specifications ~~~~~~~~~~~~~~~~~~~~~~~~ ONAP METADATA Parameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ONAP defines four “metadata” parameters: vnf\_id, vf\_module\_id, vnf\_name, vf\_module\_name. These parameters must not define any constraints in the Heat template, including length restrictions, ranges, default value and/or allowed patterns. ONAP Base Template & Volume Template Output Parameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The base template and volume template output parameters are defined as input parameters in subsequent modules. When defined as input parameters, these parameters must not define any constraints in the Heat template, including length restrictions, ranges, default value and/or allowed patterns. The parameter name defined in the output statement of the Heat must be identical to the parameter name defined in the Heat that is to receive the value. ONAP Predefined Output Parameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ These parameters must not define any constraints in the Heat template, including length restrictions, ranges, default value and/or allowed patterns. ONAP Orchestration Parameters, VNF Orchestration Parameters, ONAP Orchestration Constants, VNF Orchestration Constants ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ONAP Orchestration Parameters, VNF Orchestration Parameters, ONAP Orchestration Constants, VNF Orchestration Constants must adhere to the following: - All parameters should be clearly documented in the template, including expected values. - All parameters should be clearly specified, including constraints and description. - Numeric parameter constraints should include range and/or allowed values. - When the parameter type is a string and the parameter name contains an index, the index must be zero based. That is, the index starts at zero. - When the parameter type is a Comma Delimited List (CDL), the reference index must start at zero. - Default values must only be supplied in a Heat environment file to keep the template itself as clean as possible. - Special characters must not be used in parameter names, as currently only alphanumeric characters and “\_” underscores are allowed. Use of Heat Environments ------------------------ A YAML file must have a corresponding environment file (also referred to as ENV file), even if the environment file defines no parameters. It is an ONAP requirement. The environment file must contain parameter values for the ONAP Orchestration Constants and VNF Orchestration Constants. These parameters are identical across all instances of a VNF type, and expected to change infrequently. The ONAP Orchestration Constants are associated with OS::Nova::Server image and flavor properties (See Section 5.b Resource: OS::Nova::Server – Parameters). Examples of VNF Orchestration Constants are the networking parameters associated with an internal network (e.g. private IP ranges) and Cinder volume sizes. The environment file must not contain parameter values for parameters that are instance specific (ONAP Orchestration Parameters, VNF Orchestration Parameters). These parameters are supplied to the Heat by ONAP at orchestration time. The parameters are generated and/or assigned by ONAP at orchestration time Independent Volume Templates ---------------------------- ONAP supports independent deployment of a Cinder volume via separate Heat templates. This allows the volume to persist after VNF deletion so that they can be reused on another instance (e.g. during a failover activity). A VNF Incremental Module or Base Module may have an independent volume module. Use of separate volume modules is optional. A Cinder volume may be embedded within the Incremental or Base Module if persistence is not required. If a VNF Incremental Module or Base Module has an independent volume module, the scope of volume templates must be 1:1 with Incremental module or Base module. A single volume module must create only the volumes required by a single Incremental module or Base module. The following rules apply to independent volume Heat templates: - Cinder volumes must be created in a separate Heat template from the Incremental and Base Modules. - A single volume module must include all Cinder volumes needed by the Incremental/Base module. - The volume template must define “outputs” for each Cinder volume resource universally unique identifier (UUID) (i.e. ONAP Volume Template Output Parameters). - The VNF Incremental Module or Base Module must define input parameters that match each Volume output parameter (i.e., ONAP Volume Template Output Parameters). - ONAP will supply the volume template outputs automatically to the bases/incremental template input parameters. - Volume modules may utilize nested Heat templates. **Example (volume template):** In this example, the {vm-type} has been left as a variable. {vm-type} is described in section 5.b {vm-type}. If the VM was a load balancer, the {vm-type} could be defined as “lb” .. code-block:: python parameters: vm-typevnf\_name: type: string {vm-type}\_volume\_size\_0: type: number ... resources: {vm-type}\_volume\_0: type: OS::Cinder::Volume properties: name: str\_replace: template: VNF\_NAME\_volume\_0 params: VNF\_NAME: { get\_param: vnf\_name } size: {get\_param: {vm-type}\_volume\_size\_0} ... *(+ additional volume definitions)* .. code-block:: python outputs: {vm-type}\_volume\_id\_0: value: {get\_resource: {vm-type}\_volume\_0} ... *(+ additional volume outputs)* *Example (VNF module template):* .. code-block:: python parameters: {vm-type}\_name\_0: type: string {vm-type}\_volume\_id\_0: type: string ... resources: {vm-type}\_0: type: OS::Nova::Server properties: name: {get\_param: {vm-type}\_name\_0} networks: ... {vm-type}\_0\_volume\_attach: type: OS::Cinder::VolumeAttachment properties: instance\_uuid: { get\_resource: {vm-type}\_0 } volume\_id: { get\_param: {vm-type}\_volume\_id\_0 } Nested Heat Templates --------------------- ONAP supports nested Heat templates per the OpenStack specifications. Nested templates may be suitable for larger VNFs that contain many repeated instances of the same VM type(s). A common usage pattern is to create a nested template for each VM type along with its supporting resources. The master VNF template (or VNF Module template) may then reference these component templates either statically (by repeated definition) or dynamically (via *OS::Heat::ResourceGroup*). Nested template support in ONAP is subject to the following limitations: - Heat templates for ONAP must only have one level of nesting. ONAP only supports one level of nesting. - Nested templates must be referenced by file name in the master template - i.e. use of *resource\_registry* in the .env file is *not* currently supported - Nested templates must have unique file names within the scope of the VNF - ONAP does not support a directory hierarchy for nested templates. All templates must be in a single, flat directory (per VNF) - A nested template may be shared by all Modules (i.e., Heat templates) within a given VNF Networking ---------- External Networks ----------------- VNF templates must not include any resources for external networks connected to the VNF. In this context, “external” is in relation to the VNF itself (not with regard to the Network Cloud site). External networks may also be referred to as “inter-VNF” networks. - External networks must be orchestrated separately, so they can be shared by multiple VNFs and managed independently. When the external network is created, it must be assigned a unique {network-role} (See section 5.b {network-role}). - External networks must be passed into the VNF template as parameters, including the network-id (i.e. the neutron network UUID) and optional subnet ID. - VNF templates must pass the appropriate external network IDs into nested VM templates when nested Heat is used. - VNFs may use DHCP assigned IP addresses or assign fixed IPs when attaching VMs to an external network. - ONAP enforces a naming convention for parameters associated with external networks. - Parameter values associated with an external network will be generated and/or assigned by ONAP at orchestration time. - Parameter values associated with an external network must not be enumerated in the environment file. Internal Networks ----------------- Orchestration activities related to internal networks must be included in VNF templates. In this context, “internal” is in relation to the VNF itself (not in relation to the Network Cloud site). Internal networks may also be referred to as “intra-VNF” networks or “private” networks. - Internal networks must not attach to any external gateways and/or routers. Internal networks are for intra-VM communication only. - In the modular approach, internal networks must be created in the Base Module template, with their resource IDs exposed as outputs (i.e., ONAP Base Template Output Parameters) for use by all add-on module templates. When the external network is created, it must be assigned a unique {network-role} (See section 5.b {network-role}). - VNFs may use DHCP assigned IP addresses or assign fixed IPs when attaching VMs to an internal network. - ONAP does not enforce a naming convention for parameters for internal network, however, a naming convention is provided that should be followed. - Parameter values associated with an internal network must either be passed as output parameter from the base template (i.e., ONAP Base Template Output Parameters) into the add-on modules or be enumerated in the environment file. IP Address Assignment --------------------- - VMs connect to external networks using either fixed (e.g. statically assigned) IP addresses or DHCP assigned IP addresses. - VMs connect to internal networks using either fixed (e.g. statically assigned) IP addresses or DHCP assigned IP addresses. - Neutron Floating IPs must not be used. ONAP does not support Neutron Floating IPs. - ONAP supports the OS::Neutron::Port property “allowed\_address\_pairs.” See Section 5.b Property: allowed_address_pairs. Parameter Naming Convention --------------------------- {vm-type} --------- A common *{vm-type}* identifier must be used throughout the Heat template in naming parameters, for each VM type in the VNF with the following exceptions: - The four ONAP Metadata parameters must not be prefixed with a common {vm-type} identifier. They are *vnf\_name*, *vnf\_id*, *vf\_module\_id*, *vf\_module\_name*. - Parameters only referring to a network or subnetwork must not be prefixed with a common {vm-type} identifier. - The parameter referring to the OS::Nova::Server property availability\_zone must not be prefixed with a common {vm-type} identifier. - {vm-type} must be unique to the VNF. It does not have to be globally unique across all VNFs that ONAP supports. {network-role} -------------- VNF templates must not include any resources for external networks connected to the VNF. In this context, “external” is in relation to the VNF itself (not with regard to the Network Cloud site). External networks may also be referred to as “inter-VNF” networks. External networks must be orchestrated separately, so they can be shared by multiple VNFs and managed independently. When the external network is created, it must be assigned a unique {network-role}. “External” networks must be passed into the VNF template as parameters. Examples include the network-id (i.e. the neutron network UUID) and optional subnet ID. See section 5.b Property: network & subnet. Any parameter that is associated with an external network must include the {network-role} as part of the parameter name. Internal network parameters must also define a {network-role}. Any parameter that is associated with an internal network must include int\_{network-role} as part of the parameter name. Resource: OS::Nova::Server - Parameters --------------------------------------- The following OS::Nova::Server Resource Property Parameter Names must follow the ONAP parameter Naming Convention. All the parameters associated with OS::Nova::Server are classified as ONAP Orchestration Parameters. +----------------------+-----------------------------------------+------------------+ | OS::Nova::Server | +======================+=========================================+==================+ | Property | ONAP Parameter Naming Convention | Parameter Type | +----------------------+-----------------------------------------+------------------+ | image | {*vm-type*}\_image\_name | string | +----------------------+-----------------------------------------+------------------+ | flavor | {*vm-type*}\_flavor\_name | string | +----------------------+-----------------------------------------+------------------+ | name | {*vm-type*}\_name\_{*index*} | string | +----------------------+-----------------------------------------+------------------+ | | {vm-type}\_names | CDL | +----------------------+-----------------------------------------+------------------+ | availability\_zone | availability\_zone\_{index} | string | +----------------------+-----------------------------------------+------------------+ Table 2 Resource Property Parameter Names Property: image ~~~~~~~~~~~~~~~ Image is an ONAP Orchestration Constant parameter. The image must be referenced by the Network Cloud Service Provider (NCSP) image name, with the parameter enumerated in the Heat environment file. The parameters must be named *“{vm-type}\_image\_name”* in the VNF. Each VM type (e.g., {vm-type}) should have a separate parameter for images, even if several share the same image. This provides maximum clarity and flexibility. Property: flavor ~~~~~~~~~~~~~~~~ Flavor is an ONAP Orchestration Constant parameter. The flavors must be referenced by the Network Cloud Service Provider (NCSP) flavor name, with the parameter enumerated in the Heat environment file. The parameters must be named *“{vm-type}\_flavor\_name”* for each *{vm-type}* in the VNF. Each VM type should have separate parameters for flavors, even if more than one VM shares the same flavor. This provides maximum clarity and flexibility. Property: Name ~~~~~~~~~~~~~~ Name is an OpenEOMP Orchestration parameter; the value is provided to the Heat template by ONAP. VM names (hostnames) for assignment to VM instances must be passed to Heat templates either as - an array (comma delimited list) for each VM type - a set of fixed-index parameters for each VM type instance. Each element in the VM Name list should be assigned to successive instances of that VM type. The parameter names must reflect the VM Type (i.e., include the {vm-type} in the parameter name.) The parameter name format must be one of the following: - If the parameter type is a comma delimited list: {**vm-type**}\_names - If the parameter type is a string with a fixed index: {**vm-type**}\_name\_{**index**} If a VNF contains more than three instances of a given {vm-type}, the CDL form of the parameter name (i.e., *{vm-type}*\ \_names} should be used to minimize the number of unique parameters defined in the Heat. *Examples:* .. code-block:: python parameters: {vm-type}\_names: type: comma\_delimited\_list description: VM Names for {vm-type} VMs {vm-type}\_name\_{index}: type: string description: VM Name for {vm-type} VM {index} *Example (CDL):* In this example, the {vm-type} has been defined as “lb” for load balancer. .. code-block:: python parameters: lb\_names: type: comma\_delimited\_list description: VM Names for lb VMs resources: lb\_0: type: OS::Nova::Server properties: name: { get\_param: [lb\_names, 0] } ... lb\_1: type: OS::Nova::Server properties: name: { get\_param: [lb\_names, 1] } ... **Example (fixed-index):** In this example, the {vm-type} has been defined as “lb” for load balancer. .. code-block:: python parameters: lb\_name\_0: type: string description: VM Name for lb VM 0 lb\_name\_1: type: string description: VM Name for lb VM 1 resources: lb\_0: type: OS::Nova::Server properties: name: { get\_param: lb\_name\_0 } ... lb\_1: type: OS::Nova::Server properties: name: { get\_param: lb\_name\_1 } ... Property: availability\_zone ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Availability\_zone is an ONAP Orchestration parameter; the value is provided to the Heat template by ONAP. Availability zones must be passed as individual numbered parameters (not as arrays) so that VNFs with multi-availability zone requirements can clearly specify that in its parameter definitions. The availability zone parameter must be defined as “availability\_zone\_{index}”, with the {index} starting at zero. *Example:* In this example, the {vm-type} has been defined as “lb” for load balancer. .. code-block:: python parameters: lb\_names: type: comma\_delimited\_list description: VM Names for lb VMs availability\_zone\_0: type: string description: First availability zone ID or Name resources: lb\_0: type: OS::Nova::Server properties: name: { get\_param: [lb\_names, 0] } availability\_zone: { get\_param: availability\_zone\_0 } ... Resource: OS::Nova::Server - Metadata ------------------------------------- This section describes the ONAP Metadata parameters. ONAP Heat templates must include the following three parameters that are used as metadata under the resource OS::Nova:Server: vnf\_id, vf\_module\_id, vnf\_name ONAP Heat templates may include the following parameter that is used as metadata under the resource OS::Nova:Server: vf\_module\_name. These parameters are all classified as ONAP Metadata. +---------------------------+------------------+----------------------+ | Metadata Parameter Name | Parameter Type | Mandatory/Optional | +===========================+==================+======================+ | vnf\_id | string | mandatory | +---------------------------+------------------+----------------------+ | vf\_module\_id | string | mandatory | +---------------------------+------------------+----------------------+ | vnf\_name | string | mandatory | +---------------------------+------------------+----------------------+ | vf\_module\_name | string | optional | +---------------------------+------------------+----------------------+ Table 3 ONAP Metadata Required Metadata Elements ~~~~~~~~~~~~~~~~~~~~~~~~~~ The vnf\_id, vf\_module\_id, and vnf\_name metadata elements are required (must) for *OS::Nova::Server* resources. The metadata parameters will be used by ONAP to associate the servers with the VNF instance. - vnf\_id - *“vnf\_id”* parameter value will be supplied by ONAP. ONAP generates the UUID that is the vnf\_id and supplies it to the Heat at orchestration time. - vf\_module\_id - “\ *vf\_module\_id”* parameter value will be supplied by ONAP. ONAP generates the UUID that is the vf\_module\_id and supplies it to the Heat at orchestration time. - vnf\_name - “\ *vnf\_name”* parameter value will be generated and/or assigned by ONAP and supplied to the Heat by ONAP at orchestration time. Optional Metadata Elements ~~~~~~~~~~~~~~~~~~~~~~~~~~ The following metadata element is optional for *OS::Nova::Server* resources: - *vf\_module\_name* - The vf\_module\_name is the name of the name of the Heat stack (e.g., ) in the command “Heat stack-create” (e.g. Heat stack-create [-f ] [-e ] ). The needs to be specified as part of the orchestration process. - *“vf\_module\_name”* parameter value, when used, will be supplied by ONAP to the Heat at orchestration time. The parameter will be generated and/or assigned by ONAP and supplied to the Heat by ONAP at orchestration time. *Example* In this example, the {vm-type} has been defined as “lb” for load balancer. .. code-block:: python parameters: vnf\_name: type: string description: Unique name for this VNF instance vnf\_id: type: string description: Unique ID for this VNF instance vf\_module\_name: type: string description: Unique name for this VNF Module instance vf\_module\_id: type: string description: Unique ID for this VNF Module instance resources: lb\_server\_group: type: OS::Nova::ServerGroup properties: name: str\_replace: template: VNF\_NAME\_lb\_ServerGroup params: VNF\_NAME: { get\_param: VNF\_name } policies: [ ‘anti-affinity’ ] lb\_vm\_0: type: OS::Nova::Server properties: name: { get\_param: lb\_name\_0 } scheduler\_hints: group: { get\_resource: lb\_server\_group } metadata: vnf\_name: { get\_param: vnf\_name } vnf\_id: { get\_param: vnf\_id } vf\_module\_name: { get\_param: vf\_module\_name } vf\_module\_id: { get\_param: vf\_module\_id } ... Resource: OS::Neutron::Port - Parameters ---------------------------------------- The following four OS::Neutron::Port Resource Property Parameters must adhere to the ONAP parameter naming convention. - network - subnet - fixed\_ips - allowed\_address\_pairs These four parameters reference a network, which maybe an external network or an internal network. Thus the parameter will include {network-role} in its name. When the parameter references an external network, the parameter is an ONAP Orchestration Parameter. The parameter value must be supplied by ONAP. The parameters must adhere to the ONAP parameter naming convention. +---------------------------+-----------------------------------------------+------------------+ | OS::Neutron::Port | +===========================+===============================================+==================+ | Property | Parameter Name for External Networks | Parameter Type | +---------------------------+-----------------------------------------------+------------------+ | Network | {network-role}\_net\_id | string | +---------------------------+-----------------------------------------------+------------------+ | | {network-role}\_net\_name | string | +---------------------------+-----------------------------------------------+------------------+ | Subnet | {network-role}\_subnet\_id | string | +---------------------------+-----------------------------------------------+------------------+ | | {network-role}\_v6\_subnet\_id | string | +---------------------------+-----------------------------------------------+------------------+ | fixed\_ips | {vm-type}\_{network-role}\_ip\_{index} | string | +---------------------------+-----------------------------------------------+------------------+ | | {vm-type}\_{network-role}\_ips | CDL | +---------------------------+-----------------------------------------------+------------------+ | | {vm-type}\_{network-role}\_v6\_ip\_{index} | string | +---------------------------+-----------------------------------------------+------------------+ | | {vm-type}\_{network-role}\_v6\_ips | CDL | +---------------------------+-----------------------------------------------+------------------+ | allowed\_address\_pairs | {vm-type}\_{network-role}\_floating\_ip | string | +---------------------------+-----------------------------------------------+------------------+ | | {vm-type}\_{network-role}\_floating\_v6\_ip | string | +---------------------------+-----------------------------------------------+------------------+ | | {vm-type}\_{network-role}\_ip\_{index} | string | +---------------------------+-----------------------------------------------+------------------+ | | {vm-type}\_{network-role}\_ips | CDL | +---------------------------+-----------------------------------------------+------------------+ | | {vm-type}\_{network-role}\_v6\_ip\_{index} | string | +---------------------------+-----------------------------------------------+------------------+ | | {vm-type}\_{network-role}\_v6\_ips | CDL | +---------------------------+-----------------------------------------------+------------------+ Table 4 Port Resource Property Parameters (External Networks) When the parameter references an internal network, the parameter is a VNF Orchestration Parameters. The parameter value(s) must be supplied either via an output statement(s) in the base module (i.e., ONAP Base Template Output Parameters) or be enumerated in the environment file. The parameters must adhere to the following parameter naming convention. +---------------------------+----------------------------------------------------+------------------+ | OS::Neutron::Port | +===========================+====================================================+==================+ | Property | Parameter Name for Internal Networks | Parameter Type | +---------------------------+----------------------------------------------------+------------------+ | Network | int\_{network-role}\_net\_id | string | +---------------------------+----------------------------------------------------+------------------+ | | int\_{network-role}\_net\_name | string | +---------------------------+----------------------------------------------------+------------------+ | Subnet | int\_{network-role}\_subnet\_id | string | +---------------------------+----------------------------------------------------+------------------+ | | Int\_{network-role}\_v6\_subnet\_id | string | +---------------------------+----------------------------------------------------+------------------+ | fixed\_ips | {vm-type}\_int\_{network-role}\_ip\_{index} | string | +---------------------------+----------------------------------------------------+------------------+ | | {vm-type}\_int\_{network-role}\_ips | CDL | +---------------------------+----------------------------------------------------+------------------+ | | {vm-type}\_int\_{network-role}\_v6\_ip\_{index} | string | +---------------------------+----------------------------------------------------+------------------+ | | {vm-type}\_int\_{network-role}\_v6\_ips | CDL | +---------------------------+----------------------------------------------------+------------------+ | allowed\_address\_pairs | {vm-type}\_int\_{network-role}\_floating\_ip | string | +---------------------------+----------------------------------------------------+------------------+ | | {vm-type}\_int\_{network-role}\_floating\_v6\_ip | string | +---------------------------+----------------------------------------------------+------------------+ | | {vm-type}\_int\_{network-role}\_ip\_{index} | string | +---------------------------+----------------------------------------------------+------------------+ | | {vm-type}\_int\_{network-role}\_ips | CDL | +---------------------------+----------------------------------------------------+------------------+ | | {vm-type}\_int\_{network-role}\_v6\_ip\_{index} | string | +---------------------------+----------------------------------------------------+------------------+ | | {vm-type}\_int\_{network-role}\_v6\_ips | CDL | +---------------------------+----------------------------------------------------+------------------+ Table 5 Port Resource Property Parameters (Internal Networks) Property: network & subnet ~~~~~~~~~~~~~~~~~~~~~~~~~~ The property “networks” in the resource OS::Neutron::Port must be referenced by Neutron Network ID, a UUID value, or by the network name defined in OpenStack. When the parameter is referencing an “external” network, the parameter must adhere to the following naming convention - *“{*\ network-role}\_net\_id”, for the Neutron network ID - “{network-role}\_net\_name”, for the network name in OpenStack When the parameter is referencing an “internal” network, the parameter must adhere to the following naming convention. - “\ *int\_{network-role}\_net\_id*\ ”, for the Neutron network ID - “\ *int\_{network-role}\_net\_name*\ ”, for the network name in OpenStack The property “subnet\_id” must be used if a DHCP IP address assignment is being requested and the DHCP IP address assignment is targeted at a specific subnet. The property “subnet\_id” should not be used if all IP assignments are fixed, or if the DHCP assignment does not target a specific subnet When the parameter is referencing an “external” network subnet, the “subnet\_id” parameter must adhere to the following naming convention. - “\ *{network-role}\_subnet\_id*\ ” if the subnet is an IPv4 subnet - “\ *{network-role}\_v6\_subnet\_id”* if the subnet is an IPv6 subnet When the parameter is referencing an “internal” network subnet, the “subnet\_id” parameter must adhere to the following naming convention. - “\ *int\_{network-role}\_subnet\_id*\ ” if the subnet is an IPv4 subnet - “\ *int\_{network-role}\_v6\_subnet\_id*\ ” if the subnet is an IPv6 subnet *Example:* .. code-block:: python parameters: {network-role}\_net\_id: type: string description: Neutron UUID for the {network-role} network {network-role}\_net\_name: type: string description: Neutron name for the {network-role} network {network-role}\_subnet\_id: type: string description: Neutron subnet UUID for the {network-role} network {network-role}\_v6\_subnet\_id: type: string description: Neutron subnet UUID for the {network-role} network *Example:* In this example, the {network-role} has been defined as “oam” to represent an oam network and the {vm-type} has been defined as “lb” for load balancer. .. code-block:: python parameters: oam\_net\_id: type: string description: Neutron UUID for the oam network resources: lb\_port\_1: type: OS::Neutron::Port network: { get\_param: oam\_net\_id } Property: fixed\_ips ~~~~~~~~~~~~~~~~~~~~ The property “fixed\_ips” in the resource OS::Neutron::Port must be used when statically assigning IP addresses. An IP address is assigned to a port on a type of VM (i.e., {vm-type}) that is connected to a type of network (i.e., {network-role}). These two tags are components of the parameter name. When the “fixed\_ips” parameter is referencing an “external” network, the parameter must adhere to the naming convention below. The parameter may be a comma delimited list or a string. There must be a different parameter name for IPv4 IP addresses and IPv6 addresses - **Comma-delimited list:** Each element in the IP list should be assigned to successive instances of that VM type on that network. - *Format for IPv4 addresses:* {vm-type}\_{network-role}\_ips - *Format for IPv6 addresses:* {vm-type}\_{network-role}\_v6\_ips - **A set of fixed-index parameters:** In this case, the parameter should have “\ *type: string*\ ” and must be repeated for every IP expected for each {vm-type} + {network-role} pair. - *Format for IPv4 addresses:* {vm-type}\_{network-role}\_ip\_{index} - *Format for IPv6 addresses:* {vm-type}\_{network-role}\_v6\_ip\_{index} When the “fixed\_ips” parameter is referencing an “internal” network, the parameter must adhere to the naming convention below. The parameter may be a comma delimited list or a string. There must be a different parameter name for IPv4 IP addresses and IPv6 addresses - **Comma-delimited list:** Each element in the IP list should be assigned to successive instances of that VM type on that network. - *Format for IPv4 addresses:* {vm-type}\_int\_{network-role}\_ips - *Format for IPv6 addresses:* {vm-type}\_int\_{network-role}\_v6\_ips - **A set of fixed-index parameters:** In this case, the parameter should have “\ *type: string*\ ” and must be repeated for every IP expected for each {vm-type} and {network-role}pair. - *Format for IPv4 addresses:* {vm-type}\_int\_{network-role}\_ip\_{index} - *Format for IPv6 addresses:* {vm-type}\_int\_{network-role}\_v6\_ip\_{index} If a VNF contains more than three IP addresses for a given {vm-type} and {network-role} combination, the CDL form of the parameter name should be used to minimize the number of unique parameters defined in the Heat. *Example (external network)* .. code-block:: python parameters: {vm-type}\_{network-role}\_ips: type: comma\_delimited\_list description: Fixed IPv4 assignments for {vm-type} VMs on the {network-role} network {vm-type}\_{network-role}\_v6\_ips: type: comma\_delimited\_list description: Fixed IPv6 assignments for {vm-type} VMs on the {network-role} network {vm-type}\_{network-role}\_ip\_{index}: type: string description: Fixed IPv4 assignment for {vm-type} VM {index} on the {network-role} network {vm-type}\_{network-role}\_v6\_ip\_{index}: type: string description: Fixed IPv6 assignment for {vm-type} VM {index} on the {network-role} network *Example (CDL parameter for IPv4 Address Assignments to an external network):* In this example, the {network-role} has been defined as “oam” to represent an oam network and the {vm-type} has been defined as “db” for database. .. code-block:: python parameters: oam\_net\_id: type: string description: Neutron UUID for a oam network db\_oam\_ips: type: comma\_delimited\_list description: Fixed IP assignments for db VMs on the oam network resources: db\_0\_port\_1: type: OS::Neutron::Port network: { get\_param: oam\_net\_id } fixed\_ips: [ { “ip\_address”: {get\_param: [ db\_oam\_ips, 0] }}] db\_1\_port\_1: type: OS::Neutron::Port network: { get\_param: oam\_net\_id } fixed\_ips: [ { “ip\_address”: {get\_param: [ db\_oam\_ips, 1] }}] *Example (string parameters for IPv4 Address Assignments to an external network):* In this example, the {network-role} has been defined as “oam” to represent an oam network and the {vm-type} has been defined as “db” for database. .. code-block:: python parameters: oam\_net\_id: type: string description: Neutron UUID for an OAM network db\_oam\_ip\_0: type: string description: First fixed IP assignment for db VMs on the OAM network db\_oam\_ip\_1: type: string description: Second fixed IP assignment for db VMs on the OAM network resources: db\_0\_port\_1: type: OS::Neutron::Port network: { get\_param: oam\_net\_id } fixed\_ips: [ { “ip\_address”: {get\_param: db\_oam\_ip\_0}}] db\_1\_port\_1: type: OS::Neutron::Port network: { get\_param: oam\_net\_id } fixed\_ips: [ { “ip\_address”: {get\_param: db\_oam\_ip\_1}}] Property: allowed\_address\_pairs ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The property “allowed\_address\_pairs” in the resource OS::Neutron::Port allows the user to specify mac\_address/ip\_address (CIDR) pairs that pass through a port regardless of subnet. This enables the use of protocols such as VRRP, which floats an IP address between two instances to enable fast data plane failover. An “allowed\_address\_pairs” is unique to a {vm-type} and {network-role} combination. The management of these IP addresses (i.e. transferring ownership between active and standby VMs) is the responsibility of the application itself. Note that these parameters are *not* intended to represent Neutron “Floating IP” resources, for which OpenStack manages a pool of public IP addresses that are mapped to specific VM ports. In that case, the individual VMs are not even aware of the public IPs, and all assignment of public IPs to VMs is via OpenStack commands. ONAP does not support Neutron-style Floating IPs. Both IPv4 and IPv6 “allowed\_address\_pairs” addresses are supported. If property “allowed\_address\_pairs” is used with an external network, the parameter name must adhere to the following convention: - *Format for IPv4 addresses: {vm-type}\_{network-role}\_floating\_ip* - *Format for IPv6 addresses: {vm-type}\_{network-role}\_floating\_v6\_ip* *Example:* .. code-block:: python parameters: {vm-type}\_{network-role}\_floating\_ip: type: string description: VIP for {vm-type} VMs on the {network-role} network {vm-type}\_{network-role}\_floating\_v6\_ip: type: string description: VIP for {vm-type} VMs on the {network-role} network *Example:* In this example, the {network-role} has been defined as “oam” to represent an oam network and the {vm-type} has been defined as “db” for database. .. code-block:: python parameters: db\_oam\_ips: type: comma\_delimited\_list description: Fixed IPs for db VMs on the oam network db\_oam\_floating\_ip: type: string description: Floating IP for db VMs on the oam network resources: db\_0\_port\_0: type: OS::Neutron::Port network: { get\_param: oam\_net\_id } fixed\_ips: [ { “ip\_address”: {get\_param: [db\_oam\_ips,0] }}] allowed\_address\_pairs: [ { “ip\_address”: {get\_param: db\_oam\_floating\_ip}}] db\_1\_port\_0: type: OS::Neutron::Port network: { get\_param: oam\_net\_id } fixed\_ips: [ { “ip\_address”: {get\_param: [db\_oam\_ips,1] }}] allowed\_address\_pairs: [ { “ip\_address”: {get\_param: db\_oam\_floating\_ip}}] If property “allowed\_address\_pairs” is used with an internal network, the parameter name should adhere to the following convention: - *Format for IPv4 addresses: {vm-type}\_int\_{network-role}\_floating\_ip* - *Format for IPv6 addresses: {vm-type}\_int\_{network-role}\_floating\_v6\_ip* Using the parameter *{vm-type}\_{network-role}\_floating\_ip* or *{vm-type}\_{network-role}\_floating\_v6\_ip* provides only one floating IP per Vm-type{vm-type} and {network-role} pair. If there is a need for multiple floating IPs (e.g., Virtual IPs (VIPs)) for a given {vm-type} and {network-role} combination within a VNF, then the parameter names defined for the “fixed\_ips” should be used with the “allowed\_address\_pairs” property. The examples below illustrate this. Below example reflects two load balancer pairs in a single VNF. Each pair has one VIP. *Example: A VNF has four load balancers. Each pair has a unique VIP.* *Pair 1:* lb\_0 and lb\_1 share a unique VIP *Pair 2:* lb\_2 and lb\_3 share a unique VIP In this example, the {network-role} has been defined as “oam” to represent an oam network and the {vm-type} has been defined as “lb” for load balancer. .. code-block:: python resources: lb\_0\_port\_0:      type: OS::Neutron::Port         network: { get\_param: oam\_net\_id }         fixed\_ips: [ { “ip\_address”: {get\_param: [lb\_oam\_ips,0] }}]         allowed\_address\_pairs: [{ “ip\_address”: {get\_param: [lb\_oam\_ips,2] }}] lb\_1\_port\_0:         type: OS::Neutron::Port         network: { get\_param: oam\_net\_id }         fixed\_ips: [ { “ip\_address”: {get\_param: [lb\_oam\_ips,1] }}]         allowed\_address\_pairs: [{ “ip\_address”: {get\_param: [lb\_oam\_ips,2] }}]       lb\_2\_port\_0:        type: OS::Neutron::Port         network: { get\_param: oam\_net\_id }         fixed\_ips: [ { “ip\_address”: {get\_param: [lb\_oam\_ips,3] }}]         allowed\_address\_pairs: [{ “ip\_address”: {get\_param: [lb\_oam\_ips,5] }}] lb\_3\_port\_0:     type: OS::Neutron::Port         network: { get\_param: oam\_net\_id }         fixed\_ips: [ { “ip\_address”: {get\_param: [lb\_oam\_ips,4] }}]         allowed\_address\_pairs: [{ “ip\_address”: {get\_param: [lb\_oam\_ips,5] }}] Below example reflects a single app VM pair within a VNF with two VIPs:  *Example: A VNF has two load balancers. The pair of load balancers share two VIPs.* In this example, the {network-role} has been defined as “oam” to represent an oam network and the {vm-type} has been defined as “lb” for load balancer. .. code-block:: python resources: lb\_0\_port\_0:      type: OS::Neutron::Port         network: { get\_param: oam\_net\_id }         fixed\_ips: [ { “ip\_address”: {get\_param: [lb\_oam\_ips,0] }}]         allowed\_address\_pairs: [{ "ip\_address": {get\_param: [lb\_oam\_ips,2] }, {get\_param: [lb\_oam\_ips,3] }}] lb\_1\_port\_0: type: OS::Neutron::Port         network: { get\_param: oam\_net\_id }     fixed\_ips: [ { “ip\_address”: {get\_param: [lb\_oam\_ips,1] }}]        allowed\_address\_pairs: [{ "ip\_address": {get\_param: [lb\_oam\_ips,2] }, {get\_param: [lb\_oam\_ips,3] }}] As a general rule, provide the fixed IPs for the VMs indexed first in the CDL and then the VIPs as shown in the examples above. Resource Property: name ----------------------- The parameter naming standard for the resource OS::Nova::Server has been defined in Section 5.b Resource: OS::Nova::Server – Parameters. This section describes how the name property of all other resources must be defined. Heat templates must use the Heat “str\_replace” function in conjunction with the ONAP supplied metadata parameter *vnf\_name* or *vnf\_module\_id* to generate a unique name for each VNF instance. This prevents the use of unique parameters values for resource “name” properties to be enumerated in a per instance environment file. Note that - In most cases, only the use of the vnf\_name is necessary to create a unique name - the Heat pseudo parameter 'OS::stack\_name’ can also be used in the ‘str\_replace’ construct to generate a unique name when the vnf\_name does not provide uniqueness .. code-block:: python type: OS::Cinder::Volume properities: name: str\_replace:          template: VF\_NAME\_STACK\_NAME\_oam\_volume           params:             VF\_NAME: { get\_param: vnf\_name }             STACK\_NAME: { get\_param: 'OS::stack\_name'  } type: OS::Neutron::SecurityGroup properties: description: Security Group of Firewall name: str\_replace: template: VNF\_NAME\_Firewall\_SecurityGroup params: VNF\_NAME: { get\_param: vnf\_name } Output Parameters ----------------- ONAP defines three type of Output Parameters. Base Template Output Parameters: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The base template output parameters are available for use as input parameters in all add-on modules. The add-on modules may (or may not) use these parameters. Volume Template Output Parameters: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The volume template output parameters are only available only for the module (base or add on) that the volume is associated with. Predefined Output Parameters ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ONAP currently defines one predefined output parameter. OAM Management IP Addresses ^^^^^^^^^^^^^^^^^^^^^^^^^^^ Many VNFs will have a management interface for application controllers to interact with and configure the VNF. Typically, this will be via a specific VM that performs a VNF administration function. The IP address of this interface must be captured and inventoried by ONAP. This might be a VIP if the VNF contains an HA pair of management VMs, or may be a single IP address assigned to one VM. The Heat template may define either (or both) of the following Output parameters to identify the management IP address. - *oam\_management\_v4\_address* - *oam\_management\_v6\_address* *Notes*: - The Management IP Address should be defined only once per VNF, so it would only appear in one Module template - If a fixed IP for the admin VM is passed as an input parameter, it may be echoed in the output parameters - If the IP for the admin VM is obtained via DHCP, it may be obtained from the resource attributes *Example:* .. code-block:: python resources: admin\_server: type: OS::Nova::Server properties: networks: - network: {get\_param: oam\_net\_id } ... Outputs: oam\_management\_v4\_address: value: {get\_attr: [admin\_server, networks, {get\_param: oam\_net\_id}, 0] } Heat Template Constructs ------------------------ External References ------------------- Heat templates *should not* reference any HTTP-based resource definitions, any HTTP-based nested configurations, or any HTTP-based environment files. - During orchestration, ONAP *should not* retrieve any such resources from external/untrusted/unknown sources. - VNF images should not contain such references in user-data or other configuration/operational scripts that are specified via Heat or encoded into the VNF image itself. *Note:* HTTP-based references are acceptable if the HTTP-based reference is accessing information with the VM private/internal network. Heat Files Support (get\_file) ------------------------------ Heat Templates may contain the inclusion of text files into Heat templates via the Heat “get\_file” directive. This may be used, for example, to define a common “user-data” script, or to inject files into a VM on startup via the “personality” property. Support for Heat Files is subject to the following limitations: - The ‘get\_files’ targets must be referenced in Heat templates by file name, and the corresponding files should be delivered to ONAP along with the Heat templates. - URL-based file retrieval must not be used; it is not supported. - The included files must have unique file names within the scope of the VNF. - ONAP does not support a directory hierarchy for included files. - All files must be in a single, flat directory per VNF. - Included files may be used by all Modules within a given VNF. - get\_file directives may be used in both non-nested and nested templates Use of Heat ResourceGroup ------------------------- The *OS::Heat::ResourceGroup* is a useful Heat element for creating multiple instances of a given resource or collection of resources. Typically it is used with a nested Heat template, to create, for example, a set of identical *OS::Nova::Server* resources plus their related *OS::Neutron::Port* resources via a single resource in a master template. *ResourceGroup* may be used in ONAP to simplify the structure of a Heat template that creates multiple instances of the same VM type. However, there are important caveats to be aware of. *ResourceGroup* does not deal with structured parameters (comma-delimited-list and json) as one might typically expect. In particular, when using a list-based parameter, where each list element corresponds to one instance of the *ResourceGroup*, it is not possible to use the intrinsic “loop variable” %index% in the *ResourceGroup* definition. For instance, the following is **not** valid Heat for a *ResourceGroup*: .. code-block:: python type: OS::Heat::ResourceGroup resource:      type: my\_nested\_vm\_template.yaml      properties:          name: {get\_param: [vm\_name\_list, %index%]} Although this appears to use the nth entry of the *vm\_name\_list* list for the nth element of the *ResourceGroup*, it will in fact result in a Heat exception. When parameters are provided as a list (one for each element of a *ResourceGroup*), you must pass the complete parameter to the nested template along with the current index as separate parameters. Below is an example of an **acceptable** Heat Syntax for a *ResourceGroup*: .. code-block:: python type: OS::Heat::ResourceGroup resource:     type: my\_nested\_vm\_template.yaml     properties:         names: {get\_param: vm\_name\_list}         index: %index% You can then reference within the nested template as: { get\_param: [names, {get\_param: index} ] } Note that this is workaround has very important limitations. Since the entire list parameter is passed to the nested template, any change to that list (e.g., adding an additional element) will cause Heat to treat the entire parameter as updated within the context of the nested template (i.e., for each *ResourceGroup* element).  As a result, if *ResourceGroup* is ever used for scaling (e.g., increment the count and include an additional element to each list parameter), Heat will often rebuild every existing element in addition to adding the “deltas”. For this reason, use of *ResourceGroup* for scaling in this manner is not supported. Key Pairs --------- When Nova Servers are created via Heat templates, they may be passed a “keypair” which provides an ssh key to the ‘root’ login on the newly created VM. This is often done so that an initial root key/password does not need to be hard-coded into the image. Key pairs are unusual in OpenStack, because they are the one resource that is owned by an OpenStack User as opposed to being owned by an OpenStack Tenant. As a result, they are usable only by the User that created the keypair. This causes a problem when a Heat template attempts to reference a keypair by name, because it assumes that the keypair was previously created by a specific ONAP user ID. When a keypair is assigned to a server, the SSH public-key is provisioned on the VMs at instantiation time. They keypair itself is not referenced further by the VM (i.e. if the keypair is updated with a new public key, it would only apply to subsequent VMs created with that keypair). Due to this behavior, the recommended usage of keypairs is in a more generic manner which does not require the pre-requisite creation of a keypair. The Heat should be structured in such a way as to: - Pass a public key as a parameter value instead of a keypair name - Create a new keypair within the VNF Heat templates (in the base module) for use within that VNF By following this approach, the end result is the same as pre-creating the keypair using the public key – i.e., that public key will be provisioned in the new VM. However, this recommended approach also makes sure that a known public key is supplied (instead of having OpenStack generate a public/private pair to be saved and tracked outside of ONAP). It also removes any access/ownership issues over the created keypair. The public keys may be enumerated as a VNF Orchestration Constant in the environment file (since it is public, it is not a secret key), or passed at run-time as an instance-specific parameters. ONAP will never automatically assign a public/private key pair. *Example (create keypair with an existing ssh public-key for {vm-type} of lb (for load balancer)):* .. code-block:: python parameters: vnf\_name: type: string ssh\_public\_key: type: string resources: my\_keypair: type: OS::Nova::Keypair properties: name: str\_replace: template: VNF\_NAME\_key\_pair params: VNF\_NAME: { get\_param: vnf\_name } public\_key: {get\_param: lb\_ssh\_public\_key} save\_private\_key: false Security Groups --------------- OpenStack allows a tenant to create Security groups and define rules within the security groups. Security groups, with their rules, may either be created in the Heat template or they can be pre-created in OpenStack and referenced within the Heat template via parameter(s). There can be a different approach for security groups assigned to ports on internal (intra-VNF) networks or external networks (inter-VNF). Furthermore, there can be a common security group across all VMs for a specific network or it can vary by VM (i.e., {vm-type}) and network type (i.e., {network-role}). Anti-Affinity and Affinity Rules -------------------------------- Anti-affinity or affinity rules are supported using normal OpenStack *“OS::Nova::ServerGroup”* resources. Separate ServerGroups are typically created for each VM type to prevent them from residing on the same host, but they can be applied to multiple VM types to extend the affinity/anti-affinity across related VM types as well. *Example:* In this example, the {network-role} has been defined as “oam” to represent an oam network and the {vm-type} have been defined as “lb” for load balancer and “db” for database. .. code-block:: python resources: db\_server\_group: type: OS::Nova::ServerGroup properties: name: str\_replace: params: $vnf\_name: {get\_param: vnf\_name} template: $vnf\_name-server\_group1 policies: - *anti-affinity* lb\_server\_group: type: OS::Nova::ServerGroup properties: name: str\_replace: params: $vnf\_name: {get\_param: vnf\_name} template: $vnf\_name-server\_group2 policies: - *affinity* *db\_0:* *type: OS::Nova::Server* *properties:* *...* scheduler\_hints: group: {get\_param: db\_server\_group} db\_1: type: OS::Nova::Server properties: ... scheduler\_hints: group: {get\_param: db\_server\_group} lb\_0: type: OS::Nova::Server properties: ... scheduler\_hints: group: {get\_param: lb\_server\_group}  d. VNFM Driver Develop Steps ============================== Aid to help the VNF vendor to fasten the integration with the NFVO via Special VNFM, the OpenO provides the documents. In this charter, the develop steps for VNF vendors will be introduced. First, using the VNF SDK tools to design the VNF with TOSCA model and output the VNF TOSCA package. The VNF package can be validated, and tested. Second, the VNF vendor should provide SVNFM Driver in the OpenO, which is a micro service and in duty of translation interface from NFVO to SVNFM. The interface of NFVO is aligned to the ETSI IFA interfaces and can be gotten in the charter 5.5. The interface of SVNFM is provided by the VNF vendor self. e. Create SVNFM Adaptor Mircoservice ======================================= Some vnfs are managed by special vnfm, before add svnfm to openo, a svnfm adaptor must be added to openo to adapter the interface of nfvo and svnfm. A svnfm adaptor is a micro service with unique name and an appointed port, when started up, it must be auto registered to MSB(Micro server bus),following describes an example rest of register to MSB: POST /openoapi/microservices/v1/services { "serviceName": "catalog", "version": "v1", "url": "/openoapi/catalog/v1", "protocol": "REST", "visualRange": "1", "nodes": [ { "ip": "10.74.56.36", "port": "8988", "ttl": 0 } ] }