aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/api_squad.py
blob: 239bbd674a99ade92e97e22639f1c5b0fc96bbea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
# coding=utf-8
# squad interface
# Required parameters: 
#          FLAGS_output_dir :the output path of the model training during training process, the output of the trained model, etc.; the output path of the model prediction during predicting process
#          FLAGS_init_checkpoint_squad : model initialization path,  use bert pre-trained model for training; use the output path during training for prediction
#          FLAGS_predict_file : the file to be predicted, csv file
#          FLAGS_train_file : file to be trained, csv file
#          FLAGS_do_predict : whether to predict or not
#          FLAGS_do_train : whether to train or not
#          FLAGS_train_batch_size : the batch_size for training, default : 16
#          FLAGS_predict_batch_size : the batch_size when predicting, default: 8
#          FLAGS_learning_rate : the learning_rate at training time, default: 5e-5
#          FLAGS_num_train_epochs : epochs at training time, default: 3
#          FLAGS_max_answer_length : the maximum length of the answer, default: 100 characters
#          FLAGS_max_query_length : the maximum length of the question, default: 64
#          FLAGS_version_2_with_negative : whether there is no answer to the question, default false, must be set to False when reasoning

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import json
import math
import os
import random
import modeling
import optimization
import tokenization
import six
import tensorflow as tf
import pandas as pd
from global_setting import FLAGS_bert_config_file, FLAGS_vocab_file, FLAGS_init_checkpoint_squad




FLAGS_max_seq_length = 512
FLAGS_do_lower_case = True
FLAGS_doc_stride = 128


FLAGS_save_checkpoints_steps = 1000
FLAGS_iterations_per_loop = 1000
FLAGS_n_best_size = 20
FLAGS_tpu_zone = None
FLAGS_tpu_name = None
FLAGS_num_tpu_cores = 8
FLAGS_verbose_logging = False
FLAGS_master = None
FLAGS_use_tpu = False
FLAGS_warmup_proportion = 0.1
FLAGS_gcp_project = None
FLAGS_null_score_diff_threshold = 0.0

def make_json(input_file,questions):
    print(input_file)
    data_train = pd.read_excel(input_file)
    print(444)
    data_train.fillna(0,inplace=True)
    data_train.index = [i for i in range(len(data_train))]
    question = questions
    res = {}
    res['data'] = []
    data_inside = {}
    for i in data_train.index:
        data_inside['title'] = 'Not available'
        data_inside['paragraphs'] = []
        paragraphs_inside = {}
        paragraphs_inside['context'] = data_train.loc[i,'text']
        paragraphs_inside['qas'] = []
        for ques in question:       
            qas_inside = {}
            qas_inside['answers'] = []
            if data_train.loc[i,ques]:
                answer_inside = {}
                answer_inside['text'] = str(data_train.loc[i,ques])
                answer_inside['answer_start'] = paragraphs_inside['context'].find(answer_inside['text'])
                qas_inside['is_impossible'] = 0
                
            else:
                qas_inside['is_impossible'] = 1
                answer_inside = {}
            qas_inside['id'] = str(i) + ques
            qas_inside['question'] = ques
            qas_inside['answers'].append(answer_inside.copy())
            paragraphs_inside['qas'].append(qas_inside.copy())
        data_inside['paragraphs'].append(paragraphs_inside.copy())

        res['data'].append(data_inside.copy())
    print('make json done')
    return json.dumps(res)




class SquadExample(object):
    """A single training/test example for simple sequence classification.

       For examples without an answer, the start and end position are -1.
    """

    def __init__(self,
                 qas_id,
                 question_text,
                 doc_tokens,
                 orig_answer_text=None,
                 start_position=None,
                 end_position=None,
                 is_impossible=False):
        self.qas_id = qas_id
        self.question_text = question_text
        self.doc_tokens = doc_tokens
        self.orig_answer_text = orig_answer_text
        self.start_position = start_position
        self.end_position = end_position
        self.is_impossible = is_impossible

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        s = ""
        s += "qas_id: %s" % (tokenization.printable_text(self.qas_id))
        s += ", question_text: %s" % (
            tokenization.printable_text(self.question_text))
        s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
        if self.start_position:
            s += ", start_position: %d" % (self.start_position)
        if self.start_position:
            s += ", end_position: %d" % (self.end_position)
        if self.start_position:
            s += ", is_impossible: %r" % (self.is_impossible)
        return s


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self,
                 unique_id,
                 example_index,
                 doc_span_index,
                 tokens,
                 token_to_orig_map,
                 token_is_max_context,
                 input_ids,
                 input_mask,
                 segment_ids,
                 start_position=None,
                 end_position=None,
                 is_impossible=None):
        self.unique_id = unique_id
        self.example_index = example_index
        self.doc_span_index = doc_span_index
        self.tokens = tokens
        self.token_to_orig_map = token_to_orig_map
        self.token_is_max_context = token_is_max_context
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.start_position = start_position
        self.end_position = end_position
        self.is_impossible = is_impossible


def read_squad_examples(input_file, is_training,questions,FLAGS_version_2_with_negative):
    """Read a SQuAD json file into a list of SquadExample."""
    data = make_json(input_file,questions)
    input_data = json.loads(data)["data"]

    def is_whitespace(c):
        if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
            return True
        return False

    examples = []
    for entry in input_data:
        for paragraph in entry["paragraphs"]:
            paragraph_text = paragraph["context"]
            doc_tokens = []
            char_to_word_offset = []
            prev_is_whitespace = True
            for c in paragraph_text:
                if is_whitespace(c):
                    prev_is_whitespace = True
                else:
                    if prev_is_whitespace:
                        doc_tokens.append(c)
                    else:
                        doc_tokens[-1] += c
                    prev_is_whitespace = False
                char_to_word_offset.append(len(doc_tokens) - 1)

            for qa in paragraph["qas"]:
                qas_id = qa["id"]
                question_text = qa["question"]
                start_position = None
                end_position = None
                orig_answer_text = None
                is_impossible = False
                if is_training:

                    if FLAGS_version_2_with_negative:
                        is_impossible = qa["is_impossible"]
                    if (len(qa["answers"]) != 1) and (not is_impossible):
                        raise ValueError(
                            "For training, each question should have exactly 1 answer.")
                    if not is_impossible:
                        answer = qa["answers"][0]
                        orig_answer_text = answer["text"]
                        answer_offset = answer["answer_start"]
                        answer_length = len(orig_answer_text)
                        start_position = char_to_word_offset[answer_offset]
                        end_position = char_to_word_offset[answer_offset + answer_length -
                                                           1]
                        # Only add answers where the text can be exactly recovered from the
                        # document. If this CAN'T happen it's likely due to weird Unicode
                        # stuff so we will just skip the example.
                        #
                        # Note that this means for training mode, every example is NOT
                        # guaranteed to be preserved.
                        actual_text = " ".join(
                            doc_tokens[start_position:(end_position + 1)])
                        cleaned_answer_text = " ".join(
                            tokenization.whitespace_tokenize(orig_answer_text))
                        if actual_text.find(cleaned_answer_text) == -1:
                            tf.logging.warning("Could not find answer: '%s' vs. '%s'",
                                               actual_text, cleaned_answer_text)
                            continue
                    else:
                        start_position = -1
                        end_position = -1
                        orig_answer_text = ""

                example = SquadExample(
                    qas_id=qas_id,
                    question_text=question_text,
                    doc_tokens=doc_tokens,
                    orig_answer_text=orig_answer_text,
                    start_position=start_position,
                    end_position=end_position,
                    is_impossible=is_impossible)
                examples.append(example)

    return examples


def convert_examples_to_features(examples, tokenizer, max_seq_length,
                                 doc_stride, max_query_length, is_training,
                                 output_fn):
    """Loads a data file into a list of `InputBatch`s."""

    unique_id = 1000000000

    for (example_index, example) in enumerate(examples):
        query_tokens = tokenizer.tokenize(example.question_text)

        if len(query_tokens) > max_query_length:
            query_tokens = query_tokens[0:max_query_length]

        tok_to_orig_index = []
        orig_to_tok_index = []
        all_doc_tokens = []
        for (i, token) in enumerate(example.doc_tokens):
            orig_to_tok_index.append(len(all_doc_tokens))
            sub_tokens = tokenizer.tokenize(token)
            for sub_token in sub_tokens:
                tok_to_orig_index.append(i)
                all_doc_tokens.append(sub_token)

        tok_start_position = None
        tok_end_position = None
        if is_training and example.is_impossible:
            tok_start_position = -1
            tok_end_position = -1
        if is_training and not example.is_impossible:
            tok_start_position = orig_to_tok_index[example.start_position]
            if example.end_position < len(example.doc_tokens) - 1:
                tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
            else:
                tok_end_position = len(all_doc_tokens) - 1
            (tok_start_position, tok_end_position) = _improve_answer_span(
                all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
                example.orig_answer_text)

        # The -3 accounts for [CLS], [SEP] and [SEP]
        max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

        # We can have documents that are longer than the maximum sequence length.
        # To deal with this we do a sliding window approach, where we take chunks
        # of the up to our max length with a stride of `doc_stride`.
        _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
            "DocSpan", ["start", "length"])
        doc_spans = []
        start_offset = 0
        while start_offset < len(all_doc_tokens):
            length = len(all_doc_tokens) - start_offset
            if length > max_tokens_for_doc:
                length = max_tokens_for_doc
            doc_spans.append(_DocSpan(start=start_offset, length=length))
            if start_offset + length == len(all_doc_tokens):
                break
            start_offset += min(length, doc_stride)

        for (doc_span_index, doc_span) in enumerate(doc_spans):
            tokens = []
            token_to_orig_map = {}
            token_is_max_context = {}
            segment_ids = []
            tokens.append("[CLS]")
            segment_ids.append(0)
            for token in query_tokens:
                tokens.append(token)
                segment_ids.append(0)
            tokens.append("[SEP]")
            segment_ids.append(0)

            for i in range(doc_span.length):
                split_token_index = doc_span.start + i
                token_to_orig_map[len(
                    tokens)] = tok_to_orig_index[split_token_index]

                is_max_context = _check_is_max_context(doc_spans, doc_span_index,
                                                       split_token_index)
                token_is_max_context[len(tokens)] = is_max_context
                tokens.append(all_doc_tokens[split_token_index])
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)

            # The mask has 1 for real tokens and 0 for padding tokens. Only real
            # tokens are attended to.
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            while len(input_ids) < max_seq_length:
                input_ids.append(0)
                input_mask.append(0)
                segment_ids.append(0)

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            start_position = None
            end_position = None
            if is_training and not example.is_impossible:
                # For training, if our document chunk does not contain an annotation
                # we throw it out, since there is nothing to predict.
                doc_start = doc_span.start
                doc_end = doc_span.start + doc_span.length - 1
                out_of_span = False
                if not (tok_start_position >= doc_start and
                        tok_end_position <= doc_end):
                    out_of_span = True
                if out_of_span:
                    start_position = 0
                    end_position = 0
                else:
                    doc_offset = len(query_tokens) + 2
                    start_position = tok_start_position - doc_start + doc_offset
                    end_position = tok_end_position - doc_start + doc_offset

            if is_training and example.is_impossible:
                start_position = 0
                end_position = 0

            if example_index < 20:
                tf.logging.info("*** Example ***")
                tf.logging.info("unique_id: %s" % (unique_id))
                tf.logging.info("example_index: %s" % (example_index))
                tf.logging.info("doc_span_index: %s" % (doc_span_index))
                tf.logging.info("tokens: %s" % " ".join(
                    [tokenization.printable_text(x) for x in tokens]))
                tf.logging.info("token_to_orig_map: %s" % " ".join(
                    ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)]))
                tf.logging.info("token_is_max_context: %s" % " ".join([
                    "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
                ]))
                tf.logging.info("input_ids: %s" %
                                " ".join([str(x) for x in input_ids]))
                tf.logging.info(
                    "input_mask: %s" % " ".join([str(x) for x in input_mask]))
                tf.logging.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
                if is_training and example.is_impossible:
                    tf.logging.info("impossible example")
                if is_training and not example.is_impossible:
                    answer_text = " ".join(
                        tokens[start_position:(end_position + 1)])
                    tf.logging.info("start_position: %d" % (start_position))
                    tf.logging.info("end_position: %d" % (end_position))
                    tf.logging.info(
                        "answer: %s" % (tokenization.printable_text(answer_text)))

            feature = InputFeatures(
                unique_id=unique_id,
                example_index=example_index,
                doc_span_index=doc_span_index,
                tokens=tokens,
                token_to_orig_map=token_to_orig_map,
                token_is_max_context=token_is_max_context,
                input_ids=input_ids,
                input_mask=input_mask,
                segment_ids=segment_ids,
                start_position=start_position,
                end_position=end_position,
                is_impossible=example.is_impossible)

            # Run callback
            output_fn(feature)

            unique_id += 1


def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
                         orig_answer_text):
    """Returns tokenized answer spans that better match the annotated answer."""

    # The SQuAD annotations are character based. We first project them to
    # whitespace-tokenized words. But then after WordPiece tokenization, we can
    # often find a "better match". For example:
    #
    #   Question: What year was John Smith born?
    #   Context: The leader was John Smith (1895-1943).
    #   Answer: 1895
    #
    # The original whitespace-tokenized answer will be "(1895-1943).". However
    # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
    # the exact answer, 1895.
    #
    # However, this is not always possible. Consider the following:
    #
    #   Question: What country is the top exporter of electornics?
    #   Context: The Japanese electronics industry is the lagest in the world.
    #   Answer: Japan
    #
    # In this case, the annotator chose "Japan" as a character sub-span of
    # the word "Japanese". Since our WordPiece tokenizer does not split
    # "Japanese", we just use "Japanese" as the annotation. This is fairly rare
    # in SQuAD, but does happen.
    tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))

    for new_start in range(input_start, input_end + 1):
        for new_end in range(input_end, new_start - 1, -1):
            text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
            if text_span == tok_answer_text:
                return (new_start, new_end)

    return (input_start, input_end)


def _check_is_max_context(doc_spans, cur_span_index, position):
    """Check if this is the 'max context' doc span for the token."""

    # Because of the sliding window approach taken to scoring documents, a single
    # token can appear in multiple documents. E.g.
    #  Doc: the man went to the store and bought a gallon of milk
    #  Span A: the man went to the
    #  Span B: to the store and bought
    #  Span C: and bought a gallon of
    #  ...
    #
    # Now the word 'bought' will have two scores from spans B and C. We only
    # want to consider the score with "maximum context", which we define as
    # the *minimum* of its left and right context (the *sum* of left and
    # right context will always be the same, of course).
    #
    # In the example the maximum context for 'bought' would be span C since
    # it has 1 left context and 3 right context, while span B has 4 left context
    # and 0 right context.
    best_score = None
    best_span_index = None
    for (span_index, doc_span) in enumerate(doc_spans):
        end = doc_span.start + doc_span.length - 1
        if position < doc_span.start:
            continue
        if position > end:
            continue
        num_left_context = position - doc_span.start
        num_right_context = end - position
        score = min(num_left_context, num_right_context) + \
            0.01 * doc_span.length
        if best_score is None or score > best_score:
            best_score = score
            best_span_index = span_index

    return cur_span_index == best_span_index


def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
                 use_one_hot_embeddings):
    """Creates a classification model."""
    model = modeling.BertModel(
        config=bert_config,
        is_training=is_training,
        input_ids=input_ids,
        input_mask=input_mask,
        token_type_ids=segment_ids,
        use_one_hot_embeddings=use_one_hot_embeddings)

    final_hidden = model.get_sequence_output()

    final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3)
    batch_size = final_hidden_shape[0]
    seq_length = final_hidden_shape[1]
    hidden_size = final_hidden_shape[2]

    output_weights = tf.get_variable(
        "cls/squad/output_weights", [2, hidden_size],
        initializer=tf.truncated_normal_initializer(stddev=0.02))

    output_bias = tf.get_variable(
        "cls/squad/output_bias", [2], initializer=tf.zeros_initializer())

    final_hidden_matrix = tf.reshape(final_hidden,
                                     [batch_size * seq_length, hidden_size])
    logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)

    logits = tf.reshape(logits, [batch_size, seq_length, 2])
    logits = tf.transpose(logits, [2, 0, 1])

    unstacked_logits = tf.unstack(logits, axis=0)

    (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1])

    return (start_logits, end_logits)


def model_fn_builder(bert_config, init_checkpoint, learning_rate,
                     num_train_steps, num_warmup_steps, use_tpu,
                     use_one_hot_embeddings):
    """Returns `model_fn` closure for TPUEstimator."""

    def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
        """The `model_fn` for TPUEstimator."""

        tf.logging.info("*** Features ***")
        for name in sorted(features.keys()):
            tf.logging.info("  name = %s, shape = %s" %
                            (name, features[name].shape))

        unique_ids = features["unique_ids"]
        input_ids = features["input_ids"]
        input_mask = features["input_mask"]
        segment_ids = features["segment_ids"]

        is_training = (mode == tf.estimator.ModeKeys.TRAIN)

        (start_logits, end_logits) = create_model(
            bert_config=bert_config,
            is_training=is_training,
            input_ids=input_ids,
            input_mask=input_mask,
            segment_ids=segment_ids,
            use_one_hot_embeddings=use_one_hot_embeddings)

        tvars = tf.trainable_variables()

        initialized_variable_names = {}
        scaffold_fn = None
        if init_checkpoint:
            (assignment_map, initialized_variable_names
             ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
            if use_tpu:

                def tpu_scaffold():
                    tf.train.init_from_checkpoint(
                        init_checkpoint, assignment_map)
                    return tf.train.Scaffold()

                scaffold_fn = tpu_scaffold
            else:
                tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

        tf.logging.info("**** Trainable Variables ****")
        for var in tvars:
            init_string = ""
            if var.name in initialized_variable_names:
                init_string = ", *INIT_FROM_CKPT*"
            tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                            init_string)

        output_spec = None
        if mode == tf.estimator.ModeKeys.TRAIN:
            seq_length = modeling.get_shape_list(input_ids)[1]

            def compute_loss(logits, positions):
                one_hot_positions = tf.one_hot(
                    positions, depth=seq_length, dtype=tf.float32)
                log_probs = tf.nn.log_softmax(logits, axis=-1)
                loss = -tf.reduce_mean(
                    tf.reduce_sum(one_hot_positions * log_probs, axis=-1))
                return loss

            start_positions = features["start_positions"]
            end_positions = features["end_positions"]

            start_loss = compute_loss(start_logits, start_positions)
            end_loss = compute_loss(end_logits, end_positions)

            total_loss = (start_loss + end_loss) / 2.0

            train_op = optimization.create_optimizer(
                total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

            output_spec = tf.contrib.tpu.TPUEstimatorSpec(
                mode=mode,
                loss=total_loss,
                train_op=train_op,
                scaffold_fn=scaffold_fn)
        elif mode == tf.estimator.ModeKeys.PREDICT:
            predictions = {
                # "unique_ids": unique_ids,
                "start_logits": start_logits,
                "end_logits": end_logits,
            }
            output_spec = tf.contrib.tpu.TPUEstimatorSpec(
                mode=mode, predictions=predictions, scaffold_fn=scaffold_fn)
        else:
            raise ValueError(
                "Only TRAIN and PREDICT modes are supported: %s" % (mode))

        return output_spec

    return model_fn


def input_fn_builder(input_file, seq_length, is_training, drop_remainder):
    """Creates an `input_fn` closure to be passed to TPUEstimator."""

    name_to_features = {
        "unique_ids": tf.FixedLenFeature([], tf.int64),
        "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
        "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
        "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
    }

    if is_training:
        name_to_features["start_positions"] = tf.FixedLenFeature([], tf.int64)
        name_to_features["end_positions"] = tf.FixedLenFeature([], tf.int64)

    def _decode_record(record, name_to_features):
        """Decodes a record to a TensorFlow example."""
        example = tf.parse_single_example(record, name_to_features)

        # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
        # So cast all int64 to int32.
        for name in list(example.keys()):
            t = example[name]
            if t.dtype == tf.int64:
                t = tf.to_int32(t)
            example[name] = t

        return example

    def input_fn(params):
        """The actual input function."""
        batch_size = params["batch_size"]

        # For training, we want a lot of parallel reading and shuffling.
        # For eval, we want no shuffling and parallel reading doesn't matter.
        d = tf.data.TFRecordDataset(input_file)
        if is_training:
            d = d.repeat()
            d = d.shuffle(buffer_size=100)

        d = d.apply(
            tf.contrib.data.map_and_batch(
                lambda record: _decode_record(record, name_to_features),
                batch_size=batch_size,
                drop_remainder=drop_remainder))

        return d

    return input_fn


RawResult = collections.namedtuple("RawResult",
                                   ["unique_id", "start_logits", "end_logits"])


def write_predictions(all_examples, all_features, all_results, n_best_size,
                      max_answer_length, do_lower_case, output_prediction_file,
                      output_nbest_file, output_null_log_odds_file):
    """Write final predictions to the json file and log-odds of null if needed."""
    tf.logging.info("Writing predictions to: %s" % (output_prediction_file))
    tf.logging.info("Writing nbest to: %s" % (output_nbest_file))

    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction",
        ["feature_index", "start_index", "end_index", "start_logit", "end_logit"])

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
    scores_diff_json = collections.OrderedDict()

    for (example_index, example) in enumerate(all_examples):
        features = example_index_to_features[example_index]

        prelim_predictions = []
        # keep track of the minimum score of null start+end of position 0
        score_null = 1000000  # large and positive
        min_null_feature_index = 0  # the paragraph slice with min mull score
        null_start_logit = 0  # the start logit at the slice with min null score
        null_end_logit = 0  # the end logit at the slice with min null score
        for (feature_index, feature) in enumerate(features):
            result = unique_id_to_result[feature.unique_id]
            start_indexes = _get_best_indexes(result.start_logits, n_best_size)
            end_indexes = _get_best_indexes(result.end_logits, n_best_size)
            # if we could have irrelevant answers, get the min score of irrelevant
            if FLAGS_version_2_with_negative:
                feature_null_score = result.start_logits[0] + \
                    result.end_logits[0]
                if feature_null_score < score_null:
                    score_null = feature_null_score
                    min_null_feature_index = feature_index
                    null_start_logit = result.start_logits[0]
                    null_end_logit = result.end_logits[0]
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # We could hypothetically create invalid predictions, e.g., predict
                    # that the start of the span is in the question. We throw out all
                    # invalid predictions.
                    if start_index >= len(feature.tokens):
                        continue
                    if end_index >= len(feature.tokens):
                        continue
                    if start_index not in feature.token_to_orig_map:
                        continue
                    if end_index not in feature.token_to_orig_map:
                        continue
                    if not feature.token_is_max_context.get(start_index, False):
                        continue
                    if end_index < start_index:
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:
                        continue
                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,
                            start_index=start_index,
                            end_index=end_index,
                            start_logit=result.start_logits[start_index],
                            end_logit=result.end_logits[end_index]))

        prelim_predictions = sorted(
            prelim_predictions,
            key=lambda x: (x.start_logit + x.end_logit),
            reverse=True)

        _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
            "NbestPrediction", ["text", "start_logit", "end_logit"])

        seen_predictions = {}
        nbest = []
        for pred in prelim_predictions:
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]
            if pred.start_index > 0:  # this is a non-null prediction
                tok_tokens = feature.tokens[pred.start_index:(
                    pred.end_index + 1)]
                orig_doc_start = feature.token_to_orig_map[pred.start_index]
                orig_doc_end = feature.token_to_orig_map[pred.end_index]
                orig_tokens = example.doc_tokens[orig_doc_start:(
                    orig_doc_end + 1)]
                tok_text = " ".join(tok_tokens)

                # De-tokenize WordPieces that have been split off.
                tok_text = tok_text.replace(" ##", "")
                tok_text = tok_text.replace("##", "")

                # Clean whitespace
                tok_text = tok_text.strip()
                tok_text = " ".join(tok_text.split())
                orig_text = " ".join(orig_tokens)

                final_text = get_final_text(tok_text, orig_text, do_lower_case)
                if final_text in seen_predictions:
                    continue

                seen_predictions[final_text] = True
            else:
                final_text = ""
                seen_predictions[final_text] = True

            nbest.append(
                _NbestPrediction(
                    text=final_text,
                    start_logit=pred.start_logit,
                    end_logit=pred.end_logit))

        # In very rare edge cases we could have no valid predictions. So we
        # just create a nonce prediction in this case to avoid failure.
        if not nbest:
            nbest.append(
                _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))

        assert len(nbest) >= 1

        total_scores = []
        best_non_null_entry = None
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)
            if not best_non_null_entry:
                if entry.text:
                    best_non_null_entry = entry

        probs = _compute_softmax(total_scores)

        nbest_json = []
        for (i, entry) in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_logit"] = entry.start_logit
            output["end_logit"] = entry.end_logit
            nbest_json.append(output)

        assert len(nbest_json) >= 1

        all_predictions[example.qas_id] = nbest_json[0]["text"]

        all_nbest_json[example.qas_id] = nbest_json

    with tf.gfile.GFile(output_prediction_file, "w") as writer:
        writer.write(json.dumps(all_predictions, indent=4) + "\n")


def get_final_text(pred_text, orig_text, do_lower_case):
    """Project the tokenized prediction back to the original text."""

    # When we created the data, we kept track of the alignment between original
    # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
    # now `orig_text` contains the span of our original text corresponding to the
    # span that we predicted.
    #
    # However, `orig_text` may contain extra characters that we don't want in
    # our prediction.
    #
    # For example, let's say:
    #   pred_text = steve smith
    #   orig_text = Steve Smith's
    #
    # We don't want to return `orig_text` because it contains the extra "'s".
    #
    # We don't want to return `pred_text` because it's already been normalized
    # (the SQuAD eval script also does punctuation stripping/lower casing but
    # our tokenizer does additional normalization like stripping accent
    # characters).
    #
    # What we really want to return is "Steve Smith".
    #
    # Therefore, we have to apply a semi-complicated alignment heruistic between
    # `pred_text` and `orig_text` to get a character-to-charcter alignment. This
    # can fail in certain cases in which case we just return `orig_text`.

    def _strip_spaces(text):
        ns_chars = []
        ns_to_s_map = collections.OrderedDict()
        for (i, c) in enumerate(text):
            if c == " ":
                continue
            ns_to_s_map[len(ns_chars)] = i
            ns_chars.append(c)
        ns_text = "".join(ns_chars)
        return (ns_text, ns_to_s_map)

    # We first tokenize `orig_text`, strip whitespace from the result
    # and `pred_text`, and check if they are the same length. If they are
    # NOT the same length, the heuristic has failed. If they are the same
    # length, we assume the characters are one-to-one aligned.
    tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)

    tok_text = " ".join(tokenizer.tokenize(orig_text))

    start_position = tok_text.find(pred_text)
    if start_position == -1:
        if FLAGS_verbose_logging:
            tf.logging.info(
                "Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
        return orig_text
    end_position = start_position + len(pred_text) - 1

    (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
    (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

    if len(orig_ns_text) != len(tok_ns_text):
        if FLAGS_verbose_logging:
            tf.logging.info("Length not equal after stripping spaces: '%s' vs '%s'",
                            orig_ns_text, tok_ns_text)
        return orig_text

    # We then project the characters in `pred_text` back to `orig_text` using
    # the character-to-character alignment.
    tok_s_to_ns_map = {}
    for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
        tok_s_to_ns_map[tok_index] = i

    orig_start_position = None
    if start_position in tok_s_to_ns_map:
        ns_start_position = tok_s_to_ns_map[start_position]
        if ns_start_position in orig_ns_to_s_map:
            orig_start_position = orig_ns_to_s_map[ns_start_position]

    if orig_start_position is None:
        if FLAGS_verbose_logging:
            tf.logging.info("Couldn't map start position")
        return orig_text

    orig_end_position = None
    if end_position in tok_s_to_ns_map:
        ns_end_position = tok_s_to_ns_map[end_position]
        if ns_end_position in orig_ns_to_s_map:
            orig_end_position = orig_ns_to_s_map[ns_end_position]

    if orig_end_position is None:
        if FLAGS_verbose_logging:
            tf.logging.info("Couldn't map end position")
        return orig_text

    output_text = orig_text[orig_start_position:(orig_end_position + 1)]
    return output_text


def _get_best_indexes(logits, n_best_size):
    """Get the n-best logits from a list."""
    index_and_score = sorted(
        enumerate(logits), key=lambda x: x[1], reverse=True)

    best_indexes = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indexes.append(index_and_score[i][0])
    return best_indexes


def _compute_softmax(scores):
    """Compute softmax probability over raw logits."""
    if not scores:
        return []

    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score

    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x

    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs


class FeatureWriter(object):
    """Writes InputFeature to TF example file."""

    def __init__(self, filename, is_training):
        self.filename = filename
        self.is_training = is_training
        self.num_features = 0
        self._writer = tf.python_io.TFRecordWriter(filename)

    def process_feature(self, feature):
        """Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
        self.num_features += 1

        def create_int_feature(values):
            feature = tf.train.Feature(
                int64_list=tf.train.Int64List(value=list(values)))
            return feature

        features = collections.OrderedDict()
        features["unique_ids"] = create_int_feature([feature.unique_id])
        features["input_ids"] = create_int_feature(feature.input_ids)
        features["input_mask"] = create_int_feature(feature.input_mask)
        features["segment_ids"] = create_int_feature(feature.segment_ids)

        if self.is_training:
            features["start_positions"] = create_int_feature(
                [feature.start_position])
            features["end_positions"] = create_int_feature(
                [feature.end_position])
            impossible = 0
            if feature.is_impossible:
                impossible = 1
            features["is_impossible"] = create_int_feature([impossible])

        tf_example = tf.train.Example(
            features=tf.train.Features(feature=features))
        self._writer.write(tf_example.SerializeToString())

    def close(self):
        self._writer.close()


def validate_flags_or_throw(bert_config):
    """Validate the input FLAGS or throw an exception."""
    tokenization.validate_case_matches_checkpoint(FLAGS_do_lower_case,
                                                  FLAGS_init_checkpoint_squad)

    # if not FLAGS_do_train and not FLAGS_do_predict:
    #     raise ValueError(
    #         "At least one of `do_train` or `do_predict` must be True.")

    # if FLAGS_do_train:
    #     if not FLAGS_train_file:
    #         raise ValueError(
    #             "If `do_train` is True, then `train_file` must be specified.")
    # if FLAGS_do_predict:
    #     if not FLAGS_predict_file:
    #         raise ValueError(
    #             "If `do_predict` is True, then `predict_file` must be specified.")

    # if FLAGS_max_seq_length > bert_config.max_position_embeddings:
    #     raise ValueError(
    #         "Cannot use sequence length %d because the BERT model "
    #         "was only trained up to sequence length %d" %
    #         (FLAGS_max_seq_length, bert_config.max_position_embeddings))

    # if FLAGS_max_seq_length <= FLAGS_max_query_length + 3:
    #     raise ValueError(
    #         "The max_seq_length (%d) must be greater than max_query_length "
    #         "(%d) + 3" % (FLAGS_max_seq_length, FLAGS_max_query_length))