# coding=utf-8 # squad interface # Required parameters # FLAGS_output_dir :the output path of the model training during training process, the output of the trained model, etc.; the output path of the model prediction during predicting process # FLAGS_init_checkpoint_squad : model initialization path, use bert pre-trained model for training; use the output path during training for prediction # FLAGS_predict_file : the file to be predicted, csv file # FLAGS_train_file : file to be trained, csv file # FLAGS_do_predict : whether to predict or not # FLAGS_do_train : whether to train or not # FLAGS_train_batch_size : the batch_size for training, default : 16 # FLAGS_predict_batch_size : the batch_size when predicting, default: 8 # FLAGS_learning_rate : the learning_rate at training time, default: 5e-5 # FLAGS_num_train_epochs : epochs at training time, default: 3 # FLAGS_max_answer_length : the maximum length of the answer, default: 100 characters # FLAGS_max_query_length : the maximum length of the question, default: 64 # FLAGS_version_2_with_negative : whether there is no answer to the question, default false, must be set to False when reasoning from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import json import math import modeling import optimization import tokenization import six import tensorflow as tf import pandas as pd from global_setting import FLAGS_init_checkpoint_squad FLAGS_max_seq_length = 512 FLAGS_do_lower_case = True FLAGS_doc_stride = 128 FLAGS_save_checkpoints_steps = 1000 FLAGS_iterations_per_loop = 1000 FLAGS_n_best_size = 20 FLAGS_tpu_zone = None FLAGS_tpu_name = None FLAGS_num_tpu_cores = 8 FLAGS_verbose_logging = False FLAGS_master = None FLAGS_use_tpu = False FLAGS_warmup_proportion = 0.1 FLAGS_gcp_project = None FLAGS_null_score_diff_threshold = 0.0 def make_json(input_file, questions): print(input_file) data_train = pd.read_excel(input_file) print(444) data_train.fillna(0, inplace=True) data_train.index = [i for i in range(len(data_train))] question = questions res = {} res['data'] = [] data_inside = {} for i in data_train.index: data_inside['title'] = 'Not available' data_inside['paragraphs'] = [] paragraphs_inside = {} paragraphs_inside['context'] = data_train.loc[i, 'text'] paragraphs_inside['qas'] = [] for ques in question: qas_inside = {} qas_inside['answers'] = [] if data_train.loc[i, ques]: answer_inside = {} answer_inside['text'] = str(data_train.loc[i, ques]) answer_inside['answer_start'] = paragraphs_inside['context'].find(answer_inside['text']) qas_inside['is_impossible'] = 0 else: qas_inside['is_impossible'] = 1 answer_inside = {} qas_inside['id'] = str(i) + ques qas_inside['question'] = ques qas_inside['answers'].append(answer_inside.copy()) paragraphs_inside['qas'].append(qas_inside.copy()) data_inside['paragraphs'].append(paragraphs_inside.copy()) res['data'].append(data_inside.copy()) print('make json done') return json.dumps(res) class SquadExample(object): """A single training/test example for simple sequence classification. For examples without an answer, the start and end position are -1. """ def __init__(self, qas_id, question_text, doc_tokens, orig_answer_text=None, start_position=None, end_position=None, is_impossible=False): self.qas_id = qas_id self.question_text = question_text self.doc_tokens = doc_tokens self.orig_answer_text = orig_answer_text self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def __str__(self): return self.__repr__() def __repr__(self): s = "" s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) s += ", question_text: %s" % ( tokenization.printable_text(self.question_text)) s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) if self.start_position: s += ", start_position: %d" % (self.start_position) if self.start_position: s += ", end_position: %d" % (self.end_position) if self.start_position: s += ", is_impossible: %r" % (self.is_impossible) return s class InputFeatures(object): """A single set of features of data.""" def __init__(self, unique_id, example_index, doc_span_index, tokens, token_to_orig_map, token_is_max_context, input_ids, input_mask, segment_ids, start_position=None, end_position=None, is_impossible=None): self.unique_id = unique_id self.example_index = example_index self.doc_span_index = doc_span_index self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.token_is_max_context = token_is_max_context self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def read_squad_examples(input_file, is_training, questions, FLAGS_version_2_with_negative): """Read a SQuAD json file into a list of SquadExample.""" data = make_json(input_file, questions) input_data = json.loads(data)["data"] def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False examples = [] for entry in input_data: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["context"] doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True for c in paragraph_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None end_position = None orig_answer_text = None is_impossible = False if is_training: if FLAGS_version_2_with_negative: is_impossible = qa["is_impossible"] if (len(qa["answers"]) != 1) and (not is_impossible): raise ValueError( "For training, each question should have exactly 1 answer.") if not is_impossible: answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) start_position = char_to_word_offset[answer_offset] end_position = char_to_word_offset[answer_offset + answer_length - 1] # Only add answers where the text can be exactly recovered from the # document. If this CAN'T happen it's likely due to weird Unicode # stuff so we will just skip the example. # # Note that this means for training mode, every example is NOT # guaranteed to be preserved. actual_text = " ".join( doc_tokens[start_position:(end_position + 1)]) cleaned_answer_text = " ".join( tokenization.whitespace_tokenize(orig_answer_text)) if actual_text.find(cleaned_answer_text) == -1: tf.logging.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) continue else: start_position = -1 end_position = -1 orig_answer_text = "" example = SquadExample( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, is_impossible=is_impossible) examples.append(example) return examples def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training, output_fn): """Loads a data file into a list of `InputBatch`s.""" unique_id = 1000000000 for (example_index, example) in enumerate(examples): query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) tok_start_position = None tok_end_position = None if is_training and example.is_impossible: tok_start_position = -1 tok_end_position = -1 if is_training and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in query_tokens: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len( tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length start_position = None end_position = None if is_training and not example.is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if is_training and example.is_impossible: start_position = 0 end_position = 0 if example_index < 20: tf.logging.info("*** Example ***") tf.logging.info("unique_id: %s" % (unique_id)) tf.logging.info("example_index: %s" % (example_index)) tf.logging.info("doc_span_index: %s" % (doc_span_index)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("token_to_orig_map: %s" % " ".join( ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) tf.logging.info("token_is_max_context: %s" % " ".join([ "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) ])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info( "input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) if is_training and example.is_impossible: tf.logging.info("impossible example") if is_training and not example.is_impossible: answer_text = " ".join( tokens[start_position:(end_position + 1)]) tf.logging.info("start_position: %d" % (start_position)) tf.logging.info("end_position: %d" % (end_position)) tf.logging.info( "answer: %s" % (tokenization.printable_text(answer_text))) feature = InputFeatures( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, start_position=start_position, end_position=end_position, is_impossible=example.is_impossible) # Run callback output_fn(feature) unique_id += 1 def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """Returns tokenized answer spans that better match the annotated answer.""" # The SQuAD annotations are character based. We first project them to # whitespace-tokenized words. But then after WordPiece tokenization, we can # often find a "better match". For example: # # Question: What year was John Smith born? # Context: The leader was John Smith (1895-1943). # Answer: 1895 # # The original whitespace-tokenized answer will be "(1895-1943).". However # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match # the exact answer, 1895. # # However, this is not always possible. Consider the following: # # Question: What country is the top exporter of electornics? # Context: The Japanese electronics industry is the lagest in the world. # Answer: Japan # # In this case, the annotator chose "Japan" as a character sub-span of # the word "Japanese". Since our WordPiece tokenizer does not split # "Japanese", we just use "Japanese" as the annotation. This is fairly rare # in SQuAD, but does happen. tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end) def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + \ 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, use_one_hot_embeddings): """Creates a classification model.""" model = modeling.BertModel( config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) final_hidden = model.get_sequence_output() final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3) batch_size = final_hidden_shape[0] seq_length = final_hidden_shape[1] hidden_size = final_hidden_shape[2] output_weights = tf.get_variable( "cls/squad/output_weights", [2, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "cls/squad/output_bias", [2], initializer=tf.zeros_initializer()) final_hidden_matrix = tf.reshape(final_hidden, [batch_size * seq_length, hidden_size]) logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) logits = tf.reshape(logits, [batch_size, seq_length, 2]) logits = tf.transpose(logits, [2, 0, 1]) unstacked_logits = tf.unstack(logits, axis=0) (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1]) return (start_logits, end_logits) def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) (start_logits, end_logits) = create_model( bert_config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint( init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: seq_length = modeling.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.PREDICT: predictions = { # "unique_ids": unique_ids, "start_logits": start_logits, "end_logits": end_logits, } output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) else: raise ValueError( "Only TRAIN and PREDICT modes are supported: %s" % (mode)) return output_spec return model_fn def input_fn_builder(input_file, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "unique_ids": tf.FixedLenFeature([], tf.int64), "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), } if is_training: name_to_features["start_positions"] = tf.FixedLenFeature([], tf.int64) name_to_features["end_positions"] = tf.FixedLenFeature([], tf.int64) def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.apply( tf.contrib.data.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d return input_fn RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"]) def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, FLAGS_version_2_with_negative): """Write final predictions to the json file and log-odds of null if needed.""" tf.logging.info("Writing predictions to: %s" % (output_prediction_file)) tf.logging.info("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if FLAGS_version_2_with_negative: feature_null_score = result.start_logits[0] + \ result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index:( pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:( orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 all_predictions[example.qas_id] = nbest_json[0]["text"] all_nbest_json[example.qas_id] = nbest_json with tf.gfile.GFile(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") def get_final_text(pred_text, orig_text, do_lower_case): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heruistic between # `pred_text` and `orig_text` to get a character-to-charcter alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if FLAGS_verbose_logging: tf.logging.info( "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if FLAGS_verbose_logging: tf.logging.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in six.iteritems(tok_ns_to_s_map): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if FLAGS_verbose_logging: tf.logging.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if FLAGS_verbose_logging: tf.logging.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted( enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs class FeatureWriter(object): """Writes InputFeature to TF example file.""" def __init__(self, filename, is_training): self.filename = filename self.is_training = is_training self.num_features = 0 self._writer = tf.python_io.TFRecordWriter(filename) def process_feature(self, feature): """Write a InputFeature to the TFRecordWriter as a tf.train.Example.""" self.num_features += 1 def create_int_feature(values): feature = tf.train.Feature( int64_list=tf.train.Int64List(value=list(values))) return feature features = collections.OrderedDict() features["unique_ids"] = create_int_feature([feature.unique_id]) features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) if self.is_training: features["start_positions"] = create_int_feature( [feature.start_position]) features["end_positions"] = create_int_feature( [feature.end_position]) impossible = 0 if feature.is_impossible: impossible = 1 features["is_impossible"] = create_int_feature([impossible]) tf_example = tf.train.Example( features=tf.train.Features(feature=features)) self._writer.write(tf_example.SerializeToString()) def close(self): self._writer.close() def validate_flags_or_throw(bert_config): """Validate the input FLAGS or throw an exception.""" tokenization.validate_case_matches_checkpoint(FLAGS_do_lower_case, FLAGS_init_checkpoint_squad) # if not FLAGS_do_train and not FLAGS_do_predict: # raise ValueError( # "At least one of `do_train` or `do_predict` must be True.") # if FLAGS_do_train: # if not FLAGS_train_file: # raise ValueError( # "If `do_train` is True, then `train_file` must be specified.") # if FLAGS_do_predict: # if not FLAGS_predict_file: # raise ValueError( # "If `do_predict` is True, then `predict_file` must be specified.") # if FLAGS_max_seq_length > bert_config.max_position_embeddings: # raise ValueError( # "Cannot use sequence length %d because the BERT model " # "was only trained up to sequence length %d" % # (FLAGS_max_seq_length, bert_config.max_position_embeddings)) # if FLAGS_max_seq_length <= FLAGS_max_query_length + 3: # raise ValueError( # "The max_seq_length (%d) must be greater than max_query_length " # "(%d) + 3" % (FLAGS_max_seq_length, FLAGS_max_query_length))