From 91d04c64771832a0b8815ffbe1f0f9920320d94d Mon Sep 17 00:00:00 2001 From: Pamela Dragosh Date: Tue, 14 Feb 2017 19:41:00 -0500 Subject: Initial OpenECOMP policy/engine commit Change-Id: I7dbff37733b661643dd4d1caefa3d7dccc361b6e Signed-off-by: Pamela Dragosh --- .../app/fusion/external/d3/js/crossfilter.js | 1180 ++++++++++++++++++++ 1 file changed, 1180 insertions(+) create mode 100644 ecomp-sdk-app/src/main/webapp/app/fusion/external/d3/js/crossfilter.js (limited to 'ecomp-sdk-app/src/main/webapp/app/fusion/external/d3/js/crossfilter.js') diff --git a/ecomp-sdk-app/src/main/webapp/app/fusion/external/d3/js/crossfilter.js b/ecomp-sdk-app/src/main/webapp/app/fusion/external/d3/js/crossfilter.js new file mode 100644 index 000000000..1aaabca28 --- /dev/null +++ b/ecomp-sdk-app/src/main/webapp/app/fusion/external/d3/js/crossfilter.js @@ -0,0 +1,1180 @@ +(function(exports){ +crossfilter.version = "1.0.3"; +function crossfilter_identity(d) { + return d; +} +crossfilter.permute = permute; + +function permute(array, index) { + for (var i = 0, n = index.length, copy = new Array(n); i < n; ++i) { + copy[i] = array[index[i]]; + } + return copy; +} +var bisect = crossfilter.bisect = bisect_by(crossfilter_identity); + +bisect.by = bisect_by; + +function bisect_by(f) { + + // Locate the insertion point for x in a to maintain sorted order. The + // arguments lo and hi may be used to specify a subset of the array which + // should be considered; by default the entire array is used. If x is already + // present in a, the insertion point will be before (to the left of) any + // existing entries. The return value is suitable for use as the first + // argument to `array.splice` assuming that a is already sorted. + // + // The returned insertion point i partitions the array a into two halves so + // that all v < x for v in a[lo:i] for the left side and all v >= x for v in + // a[i:hi] for the right side. + function bisectLeft(a, x, lo, hi) { + while (lo < hi) { + var mid = lo + hi >> 1; + if (f(a[mid]) < x) lo = mid + 1; + else hi = mid; + } + return lo; + } + + // Similar to bisectLeft, but returns an insertion point which comes after (to + // the right of) any existing entries of x in a. + // + // The returned insertion point i partitions the array into two halves so that + // all v <= x for v in a[lo:i] for the left side and all v > x for v in + // a[i:hi] for the right side. + function bisectRight(a, x, lo, hi) { + while (lo < hi) { + var mid = lo + hi >> 1; + if (x < f(a[mid])) hi = mid; + else lo = mid + 1; + } + return lo; + } + + bisectRight.right = bisectRight; + bisectRight.left = bisectLeft; + return bisectRight; +} +var heap = crossfilter.heap = heap_by(crossfilter_identity); + +heap.by = heap_by; + +function heap_by(f) { + + // Builds a binary heap within the specified array a[lo:hi]. The heap has the + // property such that the parent a[lo+i] is always less than or equal to its + // two children: a[lo+2*i+1] and a[lo+2*i+2]. + function heap(a, lo, hi) { + var n = hi - lo, + i = (n >>> 1) + 1; + while (--i > 0) sift(a, i, n, lo); + return a; + } + + // Sorts the specified array a[lo:hi] in descending order, assuming it is + // already a heap. + function sort(a, lo, hi) { + var n = hi - lo, + t; + while (--n > 0) t = a[lo], a[lo] = a[lo + n], a[lo + n] = t, sift(a, 1, n, lo); + return a; + } + + // Sifts the element a[lo+i-1] down the heap, where the heap is the contiguous + // slice of array a[lo:lo+n]. This method can also be used to update the heap + // incrementally, without incurring the full cost of reconstructing the heap. + function sift(a, i, n, lo) { + var d = a[--lo + i], + x = f(d), + child; + while ((child = i << 1) <= n) { + if (child < n && f(a[lo + child]) > f(a[lo + child + 1])) child++; + if (x <= f(a[lo + child])) break; + a[lo + i] = a[lo + child]; + i = child; + } + a[lo + i] = d; + } + + heap.sort = sort; + return heap; +} +var heapselect = crossfilter.heapselect = heapselect_by(crossfilter_identity); + +heapselect.by = heapselect_by; + +function heapselect_by(f) { + var heap = heap_by(f); + + // Returns a new array containing the top k elements in the array a[lo:hi]. + // The returned array is not sorted, but maintains the heap property. If k is + // greater than hi - lo, then fewer than k elements will be returned. The + // order of elements in a is unchanged by this operation. + function heapselect(a, lo, hi, k) { + var queue = new Array(k = Math.min(hi - lo, k)), + min, + i, + x, + d; + + for (i = 0; i < k; ++i) queue[i] = a[lo++]; + heap(queue, 0, k); + + if (lo < hi) { + min = f(queue[0]); + do { + if (x = f(d = a[lo]) > min) { + queue[0] = d; + min = f(heap(queue, 0, k)[0]); + } + } while (++lo < hi); + } + + return queue; + } + + return heapselect; +} +var insertionsort = crossfilter.insertionsort = insertionsort_by(crossfilter_identity); + +insertionsort.by = insertionsort_by; + +function insertionsort_by(f) { + + function insertionsort(a, lo, hi) { + for (var i = lo + 1; i < hi; ++i) { + for (var j = i, t = a[i], x = f(t); j > lo && f(a[j - 1]) > x; --j) { + a[j] = a[j - 1]; + } + a[j] = t; + } + return a; + } + + return insertionsort; +} +// Algorithm designed by Vladimir Yaroslavskiy. +// Implementation based on the Dart project; see lib/dart/LICENSE for details. + +var quicksort = crossfilter.quicksort = quicksort_by(crossfilter_identity); + +quicksort.by = quicksort_by; + +function quicksort_by(f) { + var insertionsort = insertionsort_by(f); + + function sort(a, lo, hi) { + return (hi - lo < quicksort_sizeThreshold + ? insertionsort + : quicksort)(a, lo, hi); + } + + function quicksort(a, lo, hi) { + + // Compute the two pivots by looking at 5 elements. + var sixth = (hi - lo) / 6 | 0, + i1 = lo + sixth, + i5 = hi - 1 - sixth, + i3 = lo + hi - 1 >> 1, // The midpoint. + i2 = i3 - sixth, + i4 = i3 + sixth; + + var e1 = a[i1], x1 = f(e1), + e2 = a[i2], x2 = f(e2), + e3 = a[i3], x3 = f(e3), + e4 = a[i4], x4 = f(e4), + e5 = a[i5], x5 = f(e5); + + var t; + + // Sort the selected 5 elements using a sorting network. + if (x1 > x2) t = e1, e1 = e2, e2 = t, t = x1, x1 = x2, x2 = t; + if (x4 > x5) t = e4, e4 = e5, e5 = t, t = x4, x4 = x5, x5 = t; + if (x1 > x3) t = e1, e1 = e3, e3 = t, t = x1, x1 = x3, x3 = t; + if (x2 > x3) t = e2, e2 = e3, e3 = t, t = x2, x2 = x3, x3 = t; + if (x1 > x4) t = e1, e1 = e4, e4 = t, t = x1, x1 = x4, x4 = t; + if (x3 > x4) t = e3, e3 = e4, e4 = t, t = x3, x3 = x4, x4 = t; + if (x2 > x5) t = e2, e2 = e5, e5 = t, t = x2, x2 = x5, x5 = t; + if (x2 > x3) t = e2, e2 = e3, e3 = t, t = x2, x2 = x3, x3 = t; + if (x4 > x5) t = e4, e4 = e5, e5 = t, t = x4, x4 = x5, x5 = t; + + var pivot1 = e2, pivotValue1 = x2, + pivot2 = e4, pivotValue2 = x4; + + // e2 and e4 have been saved in the pivot variables. They will be written + // back, once the partitioning is finished. + a[i1] = e1; + a[i2] = a[lo]; + a[i3] = e3; + a[i4] = a[hi - 1]; + a[i5] = e5; + + var less = lo + 1, // First element in the middle partition. + great = hi - 2; // Last element in the middle partition. + + // Note that for value comparison, <, <=, >= and > coerce to a primitive via + // Object.prototype.valueOf; == and === do not, so in order to be consistent + // with natural order (such as for Date objects), we must do two compares. + var pivotsEqual = pivotValue1 <= pivotValue2 && pivotValue1 >= pivotValue2; + if (pivotsEqual) { + + // Degenerated case where the partitioning becomes a dutch national flag + // problem. + // + // [ | < pivot | == pivot | unpartitioned | > pivot | ] + // ^ ^ ^ ^ ^ + // left less k great right + // + // a[left] and a[right] are undefined and are filled after the + // partitioning. + // + // Invariants: + // 1) for x in ]left, less[ : x < pivot. + // 2) for x in [less, k[ : x == pivot. + // 3) for x in ]great, right[ : x > pivot. + for (var k = less; k <= great; ++k) { + var ek = a[k], xk = f(ek); + if (xk < pivotValue1) { + if (k !== less) { + a[k] = a[less]; + a[less] = ek; + } + ++less; + } else if (xk > pivotValue1) { + + // Find the first element <= pivot in the range [k - 1, great] and + // put [:ek:] there. We know that such an element must exist: + // When k == less, then el3 (which is equal to pivot) lies in the + // interval. Otherwise a[k - 1] == pivot and the search stops at k-1. + // Note that in the latter case invariant 2 will be violated for a + // short amount of time. The invariant will be restored when the + // pivots are put into their final positions. + while (true) { + var greatValue = f(a[great]); + if (greatValue > pivotValue1) { + great--; + // This is the only location in the while-loop where a new + // iteration is started. + continue; + } else if (greatValue < pivotValue1) { + // Triple exchange. + a[k] = a[less]; + a[less++] = a[great]; + a[great--] = ek; + break; + } else { + a[k] = a[great]; + a[great--] = ek; + // Note: if great < k then we will exit the outer loop and fix + // invariant 2 (which we just violated). + break; + } + } + } + } + } else { + + // We partition the list into three parts: + // 1. < pivot1 + // 2. >= pivot1 && <= pivot2 + // 3. > pivot2 + // + // During the loop we have: + // [ | < pivot1 | >= pivot1 && <= pivot2 | unpartitioned | > pivot2 | ] + // ^ ^ ^ ^ ^ + // left less k great right + // + // a[left] and a[right] are undefined and are filled after the + // partitioning. + // + // Invariants: + // 1. for x in ]left, less[ : x < pivot1 + // 2. for x in [less, k[ : pivot1 <= x && x <= pivot2 + // 3. for x in ]great, right[ : x > pivot2 + for (var k = less; k <= great; k++) { + var ek = a[k], xk = f(ek); + if (xk < pivotValue1) { + if (k !== less) { + a[k] = a[less]; + a[less] = ek; + } + ++less; + } else { + if (xk > pivotValue2) { + while (true) { + var greatValue = f(a[great]); + if (greatValue > pivotValue2) { + great--; + if (great < k) break; + // This is the only location inside the loop where a new + // iteration is started. + continue; + } else { + // a[great] <= pivot2. + if (greatValue < pivotValue1) { + // Triple exchange. + a[k] = a[less]; + a[less++] = a[great]; + a[great--] = ek; + } else { + // a[great] >= pivot1. + a[k] = a[great]; + a[great--] = ek; + } + break; + } + } + } + } + } + } + + // Move pivots into their final positions. + // We shrunk the list from both sides (a[left] and a[right] have + // meaningless values in them) and now we move elements from the first + // and third partition into these locations so that we can store the + // pivots. + a[lo] = a[less - 1]; + a[less - 1] = pivot1; + a[hi - 1] = a[great + 1]; + a[great + 1] = pivot2; + + // The list is now partitioned into three partitions: + // [ < pivot1 | >= pivot1 && <= pivot2 | > pivot2 ] + // ^ ^ ^ ^ + // left less great right + + // Recursive descent. (Don't include the pivot values.) + sort(a, lo, less - 1); + sort(a, great + 2, hi); + + if (pivotsEqual) { + // All elements in the second partition are equal to the pivot. No + // need to sort them. + return a; + } + + // In theory it should be enough to call _doSort recursively on the second + // partition. + // The Android source however removes the pivot elements from the recursive + // call if the second partition is too large (more than 2/3 of the list). + if (less < i1 && great > i5) { + var lessValue, greatValue; + while ((lessValue = f(a[less])) <= pivotValue1 && lessValue >= pivotValue1) ++less; + while ((greatValue = f(a[great])) <= pivotValue2 && greatValue >= pivotValue2) --great; + + // Copy paste of the previous 3-way partitioning with adaptions. + // + // We partition the list into three parts: + // 1. == pivot1 + // 2. > pivot1 && < pivot2 + // 3. == pivot2 + // + // During the loop we have: + // [ == pivot1 | > pivot1 && < pivot2 | unpartitioned | == pivot2 ] + // ^ ^ ^ + // less k great + // + // Invariants: + // 1. for x in [ *, less[ : x == pivot1 + // 2. for x in [less, k[ : pivot1 < x && x < pivot2 + // 3. for x in ]great, * ] : x == pivot2 + for (var k = less; k <= great; k++) { + var ek = a[k], xk = f(ek); + if (xk <= pivotValue1 && xk >= pivotValue1) { + if (k !== less) { + a[k] = a[less]; + a[less] = ek; + } + less++; + } else { + if (xk <= pivotValue2 && xk >= pivotValue2) { + while (true) { + var greatValue = f(a[great]); + if (greatValue <= pivotValue2 && greatValue >= pivotValue2) { + great--; + if (great < k) break; + // This is the only location inside the loop where a new + // iteration is started. + continue; + } else { + // a[great] < pivot2. + if (greatValue < pivotValue1) { + // Triple exchange. + a[k] = a[less]; + a[less++] = a[great]; + a[great--] = ek; + } else { + // a[great] == pivot1. + a[k] = a[great]; + a[great--] = ek; + } + break; + } + } + } + } + } + } + + // The second partition has now been cleared of pivot elements and looks + // as follows: + // [ * | > pivot1 && < pivot2 | * ] + // ^ ^ + // less great + // Sort the second partition using recursive descent. + + // The second partition looks as follows: + // [ * | >= pivot1 && <= pivot2 | * ] + // ^ ^ + // less great + // Simply sort it by recursive descent. + + return sort(a, less, great + 1); + } + + return sort; +} + +var quicksort_sizeThreshold = 32; +var crossfilter_array8 = crossfilter_arrayUntyped, + crossfilter_array16 = crossfilter_arrayUntyped, + crossfilter_array32 = crossfilter_arrayUntyped, + crossfilter_arrayLengthen = crossfilter_identity, + crossfilter_arrayWiden = crossfilter_identity; + +if (typeof Uint8Array !== "undefined") { + crossfilter_array8 = function(n) { return new Uint8Array(n); }; + crossfilter_array16 = function(n) { return new Uint16Array(n); }; + crossfilter_array32 = function(n) { return new Uint32Array(n); }; + + crossfilter_arrayLengthen = function(array, length) { + var copy = new array.constructor(length); + copy.set(array); + return copy; + }; + + crossfilter_arrayWiden = function(array, width) { + var copy; + switch (width) { + case 16: copy = crossfilter_array16(array.length); break; + case 32: copy = crossfilter_array32(array.length); break; + default: throw new Error("invalid array width!"); + } + copy.set(array); + return copy; + }; +} + +function crossfilter_arrayUntyped(n) { + return new Array(n); +} +function crossfilter_filterExact(bisect, value) { + return function(values) { + var n = values.length; + return [bisect.left(values, value, 0, n), bisect.right(values, value, 0, n)]; + }; +} + +function crossfilter_filterRange(bisect, range) { + var min = range[0], + max = range[1]; + return function(values) { + var n = values.length; + return [bisect.left(values, min, 0, n), bisect.left(values, max, 0, n)]; + }; +} + +function crossfilter_filterAll(values) { + return [0, values.length]; +} +function crossfilter_null() { + return null; +} +function crossfilter_zero() { + return 0; +} +function crossfilter_reduceIncrement(p) { + return p + 1; +} + +function crossfilter_reduceDecrement(p) { + return p - 1; +} + +function crossfilter_reduceAdd(f) { + return function(p, v) { + return p + +f(v); + }; +} + +function crossfilter_reduceSubtract(f) { + return function(p, v) { + return p - f(v); + }; +} +exports.crossfilter = crossfilter; + +function crossfilter() { + var crossfilter = { + add: add, + dimension: dimension, + groupAll: groupAll, + size: size + }; + + var data = [], // the records + n = 0, // the number of records; data.length + m = 0, // number of dimensions in use + M = 8, // number of dimensions that can fit in `filters` + filters = crossfilter_array8(0), // M bits per record; 1 is filtered out + filterListeners = [], // when the filters change + dataListeners = []; // when data is added + + // Adds the specified new records to this crossfilter. + function add(newData) { + var n0 = n, + n1 = newData.length; + + // If there's actually new data to add… + // Merge the new data into the existing data. + // Lengthen the filter bitset to handle the new records. + // Notify listeners (dimensions and groups) that new data is available. + if (n1) { + data = data.concat(newData); + filters = crossfilter_arrayLengthen(filters, n += n1); + dataListeners.forEach(function(l) { l(newData, n0, n1); }); + } + + return crossfilter; + } + + // Adds a new dimension with the specified value accessor function. + function dimension(value) { + var dimension = { + filter: filter, + filterExact: filterExact, + filterRange: filterRange, + filterAll: filterAll, + top: top, + group: group, + groupAll: groupAll + }; + + var one = 1 << m++, // bit mask, e.g., 00001000 + zero = ~one, // inverted one, e.g., 11110111 + values, // sorted, cached array + index, // value rank ↦ object id + newValues, // temporary array storing newly-added values + newIndex, // temporary array storing newly-added index + sort = quicksort_by(function(i) { return newValues[i]; }), + refilter = crossfilter_filterAll, // for recomputing filter + indexListeners = [], // when data is added + lo0 = 0, + hi0 = 0; + + // Updating a dimension is a two-stage process. First, we must update the + // associated filters for the newly-added records. Once all dimensions have + // updated their filters, the groups are notified to update. + dataListeners.unshift(preAdd); + dataListeners.push(postAdd); + + // Incorporate any existing data into this dimension, and make sure that the + // filter bitset is wide enough to handle the new dimension. + if (m > M) filters = crossfilter_arrayWiden(filters, M <<= 1); + preAdd(data, 0, n); + postAdd(data, 0, n); + + // Incorporates the specified new records into this dimension. + // This function is responsible for updating filters, values, and index. + function preAdd(newData, n0, n1) { + + // Permute new values into natural order using a sorted index. + newValues = newData.map(value); + newIndex = sort(crossfilter_range(n1), 0, n1); + newValues = permute(newValues, newIndex); + + // Bisect newValues to determine which new records are selected. + var bounds = refilter(newValues), lo1 = bounds[0], hi1 = bounds[1], i; + for (i = 0; i < lo1; ++i) filters[newIndex[i] + n0] |= one; + for (i = hi1; i < n1; ++i) filters[newIndex[i] + n0] |= one; + + // If this dimension previously had no data, then we don't need to do the + // more expensive merge operation; use the new values and index as-is. + if (!n0) { + values = newValues; + index = newIndex; + lo0 = lo1; + hi0 = hi1; + return; + } + + var oldValues = values, + oldIndex = index, + i0 = 0, + i1 = 0; + + // Otherwise, create new arrays into which to merge new and old. + values = new Array(n); + index = crossfilter_index(n, n); + + // Merge the old and new sorted values, and old and new index. + for (i = 0; i0 < n0 && i1 < n1; ++i) { + if (oldValues[i0] < newValues[i1]) { + values[i] = oldValues[i0]; + index[i] = oldIndex[i0++]; + } else { + values[i] = newValues[i1]; + index[i] = newIndex[i1++] + n0; + } + } + + // Add any remaining old values. + for (; i0 < n0; ++i0, ++i) { + values[i] = oldValues[i0]; + index[i] = oldIndex[i0]; + } + + // Add any remaining new values. + for (; i1 < n1; ++i1, ++i) { + values[i] = newValues[i1]; + index[i] = newIndex[i1] + n0; + } + + // Bisect again to recompute lo0 and hi0. + bounds = refilter(values), lo0 = bounds[0], hi0 = bounds[1]; + } + + // When all filters have updated, notify index listeners of the new values. + function postAdd(newData, n0, n1) { + indexListeners.forEach(function(l) { l(newValues, newIndex, n0, n1); }); + newValues = newIndex = null; + } + + // Updates the selected values based on the specified bounds [lo, hi]. + // This implementation is used by all the public filter methods. + function filterIndex(bounds) { + var i, + j, + k, + lo1 = bounds[0], + hi1 = bounds[1], + added = [], + removed = []; + + // Fast incremental update based on previous lo index. + if (lo1 < lo0) { + for (i = lo1, j = Math.min(lo0, hi1); i < j; ++i) { + filters[k = index[i]] ^= one; + added.push(k); + } + } else if (lo1 > lo0) { + for (i = lo0, j = Math.min(lo1, hi0); i < j; ++i) { + filters[k = index[i]] ^= one; + removed.push(k); + } + } + + // Fast incremental update based on previous hi index. + if (hi1 > hi0) { + for (i = Math.max(lo1, hi0), j = hi1; i < j; ++i) { + filters[k = index[i]] ^= one; + added.push(k); + } + } else if (hi1 < hi0) { + for (i = Math.max(lo0, hi1), j = hi0; i < j; ++i) { + filters[k = index[i]] ^= one; + removed.push(k); + } + } + + lo0 = lo1; + hi0 = hi1; + filterListeners.forEach(function(l) { l(one, added, removed); }); + return dimension; + } + + // Filters this dimension using the specified range, value, or null. + // If the range is null, this is equivalent to filterAll. + // If the range is an array, this is equivalent to filterRange. + // Otherwise, this is equivalent to filterExact. + function filter(range) { + return range == null + ? filterAll() : Array.isArray(range) + ? filterRange(range) + : filterExact(range); + } + + // Filters this dimension to select the exact value. + function filterExact(value) { + return filterIndex((refilter = crossfilter_filterExact(bisect, value))(values)); + } + + // Filters this dimension to select the specified range [lo, hi]. + // The lower bound is inclusive, and the upper bound is exclusive. + function filterRange(range) { + return filterIndex((refilter = crossfilter_filterRange(bisect, range))(values)); + } + + // Clears any filters on this dimension. + function filterAll() { + return filterIndex((refilter = crossfilter_filterAll)(values)); + } + + // Returns the top K selected records, based on this dimension's order. + // Note: observes this dimension's filter, unlike group and groupAll. + function top(k) { + var array = [], + i = hi0, + j; + + while (--i >= lo0 && k > 0) { + if (!filters[j = index[i]]) { + array.push(data[j]); + --k; + } + } + + return array; + } + + // Adds a new group to this dimension, using the specified key function. + function group(key) { + var group = { + top: top, + all: all, + reduce: reduce, + reduceCount: reduceCount, + reduceSum: reduceSum, + order: order, + orderNatural: orderNatural, + size: size + }; + + var groups, // array of {key, value} + groupIndex, // object id ↦ group id + groupWidth = 8, + groupCapacity = crossfilter_capacity(groupWidth), + k = 0, // cardinality + select, + heap, + reduceAdd, + reduceRemove, + reduceInitial, + update = crossfilter_null, + reset = crossfilter_null, + resetNeeded = true; + + if (arguments.length < 1) key = crossfilter_identity; + + // The group listens to the crossfilter for when any dimension changes, so + // that it can update the associated reduce values. It must also listen to + // the parent dimension for when data is added, and compute new keys. + filterListeners.push(update); + indexListeners.push(add); + + // Incorporate any existing data into the grouping. + add(values, index, 0, n); + + // Incorporates the specified new values into this group. + // This function is responsible for updating groups and groupIndex. + function add(newValues, newIndex, n0, n1) { + var oldGroups = groups, + reIndex = crossfilter_index(k, groupCapacity), + add = reduceAdd, + initial = reduceInitial, + k0 = k, // old cardinality + i0 = 0, // index of old group + i1 = 0, // index of new record + j, // object id + g0, // old group + x0, // old key + x1, // new key + g, // group to add + x; // key of group to add + + // If a reset is needed, we don't need to update the reduce values. + if (resetNeeded) add = initial = crossfilter_null; + + // Reset the new groups (k is a lower bound). + // Also, make sure that groupIndex exists and is long enough. + groups = new Array(k), k = 0; + groupIndex = k0 > 1 ? crossfilter_arrayLengthen(groupIndex, n) : crossfilter_index(n, groupCapacity); + + // Get the first old key (x0 of g0), if it exists. + if (k0) x0 = (g0 = oldGroups[0]).key; + + // Find the first new key (x1), skipping NaN keys. + while (i1 < n1 && !((x1 = key(newValues[i1])) >= x1)) ++i1; + + // While new keys remain… + while (i1 < n1) { + + // Determine the lesser of the two current keys; new and old. + // If there are no old keys remaining, then always add the new key. + if (g0 && x0 <= x1) { + g = g0, x = x0; + + // Record the new index of the old group. + reIndex[i0] = k; + + // Retrieve the next old key. + if (g0 = oldGroups[++i0]) x0 = g0.key; + } else { + g = {key: x1, value: initial()}, x = x1; + } + + // Add the lesser group. + groups[k] = g; + + // Add any selected records belonging to the added group, while + // advancing the new key and populating the associated group index. + while (!(x1 > x)) { + groupIndex[j = newIndex[i1] + n0] = k; + if (!(filters[j] & zero)) g.value = add(g.value, data[j]); + if (++i1 >= n1) break; + x1 = key(newValues[i1]); + } + + groupIncrement(); + } + + // Add any remaining old groups that were greater than all new keys. + // No incremental reduce is needed; these groups have no new records. + // Also record the new index of the old group. + while (i0 < k0) { + groups[reIndex[i0] = k] = oldGroups[i0++]; + groupIncrement(); + } + + // If we added any new groups before any old groups, + // update the group index of all the old records. + if (k > i0) for (i0 = 0; i0 < n0; ++i0) { + groupIndex[i0] = reIndex[groupIndex[i0]]; + } + + // Modify the update and reset behavior based on the cardinality. + // If the cardinality is less than or equal to one, then the groupIndex + // is not needed. If the cardinality is zero, then there are no records + // and therefore no groups to update or reset. Note that we also must + // change the registered listener to point to the new method. + j = filterListeners.indexOf(update); + if (k > 1) { + update = updateMany; + reset = resetMany; + } else { + if (k === 1) { + update = updateOne; + reset = resetOne; + } else { + update = crossfilter_null; + reset = crossfilter_null; + } + groupIndex = null; + } + filterListeners[j] = update; + + // Count the number of added groups, + // and widen the group index as needed. + function groupIncrement() { + if (++k === groupCapacity) { + reIndex = crossfilter_arrayWiden(reIndex, groupWidth <<= 1); + groupIndex = crossfilter_arrayWiden(groupIndex, groupWidth); + groupCapacity = crossfilter_capacity(groupWidth); + } + } + } + + // Reduces the specified selected or deselected records. + // This function is only used when the cardinality is greater than 1. + function updateMany(filterOne, added, removed) { + if (filterOne === one || resetNeeded) return; + + var i, + k, + n, + g; + + // Add the added values. + for (i = 0, n = added.length; i < n; ++i) { + if (!(filters[k = added[i]] & zero)) { + g = groups[groupIndex[k]]; + g.value = reduceAdd(g.value, data[k]); + } + } + + // Remove the removed values. + for (i = 0, n = removed.length; i < n; ++i) { + if ((filters[k = removed[i]] & zero) === filterOne) { + g = groups[groupIndex[k]]; + g.value = reduceRemove(g.value, data[k]); + } + } + } + + // Reduces the specified selected or deselected records. + // This function is only used when the cardinality is 1. + function updateOne(filterOne, added, removed) { + if (filterOne === one || resetNeeded) return; + + var i, + k, + n, + g = groups[0]; + + // Add the added values. + for (i = 0, n = added.length; i < n; ++i) { + if (!(filters[k = added[i]] & zero)) { + g.value = reduceAdd(g.value, data[k]); + } + } + + // Remove the removed values. + for (i = 0, n = removed.length; i < n; ++i) { + if ((filters[k = removed[i]] & zero) === filterOne) { + g.value = reduceRemove(g.value, data[k]); + } + } + } + + // Recomputes the group reduce values from scratch. + // This function is only used when the cardinality is greater than 1. + function resetMany() { + var i, + g; + + // Reset all group values. + for (i = 0; i < k; ++i) { + groups[i].value = reduceInitial(); + } + + // Add any selected records. + for (i = 0; i < n; ++i) { + if (!(filters[i] & zero)) { + g = groups[groupIndex[i]]; + g.value = reduceAdd(g.value, data[i]); + } + } + } + + // Recomputes the group reduce values from scratch. + // This function is only used when the cardinality is 1. + function resetOne() { + var i, + g = groups[0]; + + // Reset the singleton group values. + g.value = reduceInitial(); + + // Add any selected records. + for (i = 0; i < n; ++i) { + if (!(filters[i] & zero)) { + g.value = reduceAdd(g.value, data[i]); + } + } + } + + // Returns the array of group values, in the dimension's natural order. + function all() { + if (resetNeeded) reset(), resetNeeded = false; + return groups; + } + + // Returns a new array containing the top K group values, in reduce order. + function top(k) { + var top = select(all(), 0, groups.length, k); + return heap.sort(top, 0, top.length); + } + + // Sets the reduce behavior for this group to use the specified functions. + // This method lazily recomputes the reduce values, waiting until needed. + function reduce(add, remove, initial) { + reduceAdd = add; + reduceRemove = remove; + reduceInitial = initial; + resetNeeded = true; + return group; + } + + // A convenience method for reducing by count. + function reduceCount() { + return reduce(crossfilter_reduceIncrement, crossfilter_reduceDecrement, crossfilter_zero); + } + + // A convenience method for reducing by sum(value). + function reduceSum(value) { + return reduce(crossfilter_reduceAdd(value), crossfilter_reduceSubtract(value), crossfilter_zero); + } + + // Sets the reduce order, using the specified accessor. + function order(value) { + select = heapselect_by(valueOf); + heap = heap_by(valueOf); + function valueOf(d) { return value(d.value); } + return group; + } + + // A convenience method for natural ordering by reduce value. + function orderNatural() { + return order(crossfilter_identity); + } + + // Returns the cardinality of this group, irrespective of any filters. + function size() { + return k; + } + + return reduceCount().orderNatural(); + } + + // A convenience function for generating a singleton group. + function groupAll() { + var g = group(crossfilter_null), all = g.all; + delete g.all; + delete g.top; + delete g.order; + delete g.orderNatural; + delete g.size; + g.value = function() { return all()[0].value; }; + return g; + } + + return dimension; + } + + // A convenience method for groupAll on a dummy dimension. + // This implementation can be optimized since it is always cardinality 1. + function groupAll() { + var group = { + reduce: reduce, + reduceCount: reduceCount, + reduceSum: reduceSum, + value: value + }; + + var reduceValue, + reduceAdd, + reduceRemove, + reduceInitial, + resetNeeded = true; + + // The group listens to the crossfilter for when any dimension changes, so + // that it can update the reduce value. It must also listen to the parent + // dimension for when data is added. + filterListeners.push(update); + dataListeners.push(add); + + // For consistency; actually a no-op since resetNeeded is true. + add(data, 0, n); + + // Incorporates the specified new values into this group. + function add(newData, n0, n1) { + var i; + + if (resetNeeded) return; + + // Add the added values. + for (i = n0; i < n; ++i) { + if (!filters[i]) { + reduceValue = reduceAdd(reduceValue, data[i]); + } + } + } + + // Reduces the specified selected or deselected records. + function update(filterOne, added, removed) { + var i, + k, + n; + + if (resetNeeded) return; + + // Add the added values. + for (i = 0, n = added.length; i < n; ++i) { + if (!filters[k = added[i]]) { + reduceValue = reduceAdd(reduceValue, data[k]); + } + } + + // Remove the removed values. + for (i = 0, n = removed.length; i < n; ++i) { + if (filters[k = removed[i]] === filterOne) { + reduceValue = reduceRemove(reduceValue, data[k]); + } + } + } + + // Recomputes the group reduce value from scratch. + function reset() { + var i; + + reduceValue = reduceInitial(); + + for (i = 0; i < n; ++i) { + if (!filters[i]) { + reduceValue = reduceAdd(reduceValue, data[i]); + } + } + } + + // Sets the reduce behavior for this group to use the specified functions. + // This method lazily recomputes the reduce value, waiting until needed. + function reduce(add, remove, initial) { + reduceAdd = add; + reduceRemove = remove; + reduceInitial = initial; + resetNeeded = true; + return group; + } + + // A convenience method for reducing by count. + function reduceCount() { + return reduce(crossfilter_reduceIncrement, crossfilter_reduceDecrement, crossfilter_zero); + } + + // A convenience method for reducing by sum(value). + function reduceSum(value) { + return reduce(crossfilter_reduceAdd(value), crossfilter_reduceSubtract(value), crossfilter_zero); + } + + // Returns the computed reduce value. + function value() { + if (resetNeeded) reset(), resetNeeded = false; + return reduceValue; + } + + return reduceCount(); + } + + // Returns the number of records in this crossfilter, irrespective of any filters. + function size() { + return n; + } + + return arguments.length + ? add(arguments[0]) + : crossfilter; +} + +// Returns an array of size n, big enough to store ids up to m. +function crossfilter_index(n, m) { + return (m < 0x101 + ? crossfilter_array8 : m < 0x10001 + ? crossfilter_array16 + : crossfilter_array32)(n); +} + +// Constructs a new array of size n, with sequential values from 0 to n - 1. +function crossfilter_range(n) { + var range = crossfilter_index(n, n); + for (var i = -1; ++i < n;) range[i] = i; + return range; +} + +function crossfilter_capacity(w) { + return w === 8 + ? 0x100 : w === 16 + ? 0x10000 + : 0x100000000; +} +})(this); -- cgit 1.2.3-korg