.. This work is licensed under a Creative Commons Attribution 4.0 International License. .. Copyright (C) 2017-2018 AT&T Intellectual Property. All rights reserved. .. Copyright (C) 2020 Wipro Limited. All rights reserved. Homing Specification Guide ========================== This document describes the Homing Template format, used by the Homing service. It is a work in progress and subject to frequent revision. Template Structure ------------------ Homing templates are defined in YAML and follow the structure outlined below. .. code:: yaml homing_template_version: 2017-10-10 parameters: PARAMETER_DICT locations: LOCATION_DICT demands: DEMAND_DICT constraints: CONSTRAINT_DICT reservations: RESERVATION_DICT optimization: OPTIMIZATION - ``homing_template_version``: This key with value 2017-10-10 (or a later date) indicates that the YAML document is a Homing template of the specified version. - ``parameters``: This section allows for specifying input parameters that have to be provided when instantiating the homing template. Typically, this section is used for providing runtime parameters (like SLA thresholds), which in turn is used in the existing homing policies. The section is optional and can be omitted when no input is required. - ``locations``: This section contains the declaration of geographic locations. This section is optional and can be omitted when no input is required. - ``demands``: This section contains the declaration of demands. This section with at least one demand should be defined in any Homing template, or the template would not really do anything when being instantiated. - ``constraints``: This section contains the declaration of constraints. The section is optional and can be omitted when no input is required. - ``reservations``: This section contains the declaration of required reservations. This section is optional and can be omitted when reservations are not required. - ``optimization``: This section allows the declaration of an optimization. This section is optional and can be omitted when no input is required. Homing Template Version ----------------------- The value of ``homing_template_version`` tells HAS not only the format of the template but also features that will be validated and supported. Only one value is supported: ``2017-10-10`` in the initial release of HAS. .. code:: yaml homing_template_version: 2017-10-10 Parameters ---------- The **parameters** section allows for specifying input parameters that have to be provided when instantiating the template. Such parameters are typically used for providing runtime inputs (like SLA thresholds), which in turn is used in the existing homing policies. This also helps build reusable homing constraints where these parameters can be embedded design time, and it corresponding values can be supplied during runtime. Each parameter is specified with the name followed by its value. Values can be strings, lists, or dictionaries. Example ~~~~~~~ In this example, ``provider_name`` is a string and ``service_info`` is a dictionary containing both a string and a list (keyed by ``base_url`` and ``nod_config``, respectively). .. code:: yaml parameters: provider_name: multicloud service_info: base_url: http://serviceprovider.sdngc.com/ nod_config: - http://nod/config_a.yaml - http://nod/config_b.yaml - http://nod/config_c.yaml - http://nod/config_d.yaml A parameter can be referenced in place of any value. See the **Intrinsic Functions** section for more details. Locations --------- One or more **locations** may be declared. A location may be referenced by one or more ``constraints``. Locations may be defined in any of the following ways: Coordinate ~~~~~~~~~~ A geographic coordinate expressed as a latitude and longitude. +---------------+----------------------------+ | Key | Value | +===============+============================+ | ``latitude`` | Latitude of the location. | +---------------+----------------------------+ | ``longitude`` | Longitude of the location. | +---------------+----------------------------+ Host Name ~~~~~~~~~ An opaque host name that can be translated to a coordinate via an inventory provider (e.g., A&AI). +---------------+-----------------------------------+ | Key | Value | +===============+===================================+ | ``host_name`` | Host name identifying a location. | +---------------+-----------------------------------+ CLLI ~~~~ Common Language Location Identification (CLLI) code(https://en.wikipedia.org/wiki/CLLI_code). +---------------+-------------------+ | Key | Value | +===============+===================+ | ``clli_code`` | 8 character CLLI. | +---------------+-------------------+ **Questions** - Do we need functions that can convert one of these to the other? E.g., CLLI Codes to a latitude/longitude Placemark ~~~~~~~~~ An address expressed in geographic region-agnostic terms (referred to as a *placemark*). *This is an example as of Frankfurt release. Support for this schema is deferred to subsequent release.* +-----------------------------------+----------------------------------+ | Key | Value | +===================================+==================================+ | ``iso_country_code`` | The abbreviated country name | | | associated with the placemark. | +-----------------------------------+----------------------------------+ | ``postal_code`` | The postal code associated with | | | the placemark. | +-----------------------------------+----------------------------------+ | ``administrative_area`` | The state or province associated | | | with the placemark. | +-----------------------------------+----------------------------------+ | ``sub_administrative_area`` | Additional administrative area | | | information for the placemark. | +-----------------------------------+----------------------------------+ | ``locality`` | The city associated with the | | | placemark. | +-----------------------------------+----------------------------------+ | ``sub_locality`` | Additional city-level | | | information for the placemark. | +-----------------------------------+----------------------------------+ | ``thoroughfare`` | The street address associated | | | with the placemark. | +-----------------------------------+----------------------------------+ | ``sub_thoroughfare`` | Additional street-level | | | information for the placemark. | +-----------------------------------+----------------------------------+ **Note:** - A geocoder could be used to convert placemarks to a latitude/longitude Examples ~~~~~~~~ The following examples illustrate a location expressed in coordinate, host_name, CLLI, and placemark, respectively. .. code:: yaml locations: location_using_coordinates: latitude: 32.897480 longitude: -97.040443 host_location_using_host_name: host_name: USESTCDLLSTX55ANZ123 location_using_clli: clli_code: DLLSTX55 location_using_placemark: sub_thoroughfare: 1 thoroughfare: ATT Way locality: Bedminster administrative_area: NJ postal_code: 07921-2694 Demands ------- A **demand** can be satisfied by using candidates drawn from inventories. Each demand is uniquely named. Inventory is considered to be opaque and can represent anything from which candidates can be drawn. A demand’s resource requirements are determined by asking an **inventory provider** for one or more sets of **inventory candidates** against which the demand will be made. An explicit set of candidates may also be declared, for example, if the only candidates for a demand are predetermined. Demand criteria is dependent upon the inventory provider in use. **Provider-agnostic Schema** +-----------------------------+------------------------------------+ | Key | Value | +=============================+====================================+ | ``inventory_provider`` | A HAS-supported inventory | | | provider. | +-----------------------------+------------------------------------+ | ``inventory_type`` | The reserved words ``cloud`` | | | (cloud regions), ``service`` (for | | | existing service instances), | | | ``vfmodule`` (for vf instances), | | | ``nssi`` (for slice subnet | | | instances), ``nst`` (for slice | | | templates). Exactly one | | | inventory type may be specified. | +-----------------------------+------------------------------------+ | ``filtering_attributes`` | A list of key-value pairs, that is | | (Optional) | used to select inventory | | | candidates that match *all* the | | | specified attributes. The key | | | should be a uniquely identifiable | | | attribute at the inventory | | | provider. | +-----------------------------+------------------------------------+ | ``passthrough_attributes`` | A list of key-value pairs, that | | (Optional) | will be added to the candidate's | | | attribute directly from template. | +-----------------------------+------------------------------------+ | ``service_type`` (Optional) | If ``inventory_type`` is | | | ``service``, a list of one or more | | | provider-defined service types. If | | | only one service type is | | | specified, it may appear without | | | list markers (``[]``). | +-----------------------------+------------------------------------+ | ``service_id`` (Optional) | If ``inventory_type`` is | | | ``service``, a list of one or more | | | provider-defined service ids. If | | | only one service id is specified, | | | it may appear without list markers | | | (``[]``). | +-----------------------------+------------------------------------+ | ``default_cost`` (Optional) | The default cost of an inventory | | | candidate, expressed as currency. | | | This must be specified if the | | | inventory provider may not always | | | return a cost. | +-----------------------------+------------------------------------+ | ``required_candidates`` | A list of one or more candidates | | (Optional) | from which a solution will be | | | explored. Must be a valid | | | candidate as described in the | | | **candidate schema**. | +-----------------------------+------------------------------------+ | ``excluded_candidates`` | A list of one or more candidates | | (Optional) | that should be excluded from the | | | search space. Must be a valid | | | candidate as described in the | | | **candidate schema**. | +-----------------------------+------------------------------------+ | ``existing_placement`` | The current placement for the | | (Optional) | demand. Must be a valid candidate | | | as described in the **candidate | | | schema**. | +-----------------------------+------------------------------------+ **Note** - The demand attributes in the template come from either policy or from a northbound request scope. .. _examples-1: Examples ~~~~~~~~ The following example helps understand a demand specification using Active & Available Inventory (A&AI), the inventory provider-of-record for ONAP. **Inventory Provider Criteria** +-----------------------------+------------------------------------+ | Key | Value | +=============================+====================================+ | ``inventory_provider`` | Examples: ``aai``, ``multicloud``. | +-----------------------------+------------------------------------+ | ``inventory_type`` | The reserved words ``cloud`` | | | (cloud regions), ``service`` (for | | | existing service instances), | | | ``vfmodule`` (for vf instances), | | | ``nssi`` (for slice subnet | | | instances), ``nst`` (for slice | | | templates). Exactly one | | | inventory type may be specified. | +-----------------------------+------------------------------------+ | ``filtering attributes`` | A list of key-value pairs to match | | (Optional) | against inventory when drawing | | | candidates. | +-----------------------------+------------------------------------+ | ``passthrough_attributes`` | A list of key-value pairs, that | | (Optional) | will be added to the candidate's | | | attribute directly from template. | +-----------------------------+------------------------------------+ | ``service_type`` (Optional) | Examples may include ``vG``, | | | ``vG_MuxInfra``, etc. | +-----------------------------+------------------------------------+ | ``service_id`` (Optional) | Must be a valid service id. | | | Examples may include ``vCPE``, | | | ``VoLTE``, etc. | +-----------------------------+------------------------------------+ | ``default_cost`` (Optional) | The default cost of an inventory | | | candidate, expressed as a unitless | | | number. | +-----------------------------+------------------------------------+ | ``required_candidates`` | A list of one or more valid | | (Optional) | candidates. See **Candidate | | | Schema** for details. | +-----------------------------+------------------------------------+ | ``excluded_candidates`` | A list of one or more valid | | (Optional) | candidates. See **Candidate | | | Schema** for details. | +-----------------------------+------------------------------------+ | ``existing_placement`` | A single valid candidate, | | (Optional) | representing the current placement | | | for the demand. See **candidate | | | schema** for details. | +-----------------------------+------------------------------------+ **Candidate Schema** The following is the schema for a valid ``candidate``: - ``candidate_id`` uniquely identifies a candidate. Currently, it is either a Service Instance ID or Cloud Region ID. - ``candidate_type`` identifies the type of the candidate. Currently, it is either ``cloud`` or ``service``. \* ``inventory_type`` is defined as described in **Inventory Provider Criteria** (above). - ``inventory_provider`` identifies the inventory from which the candidate was drawn. \* - ``host_id`` is an ID of a specific host (used only when referring to service/existing inventory). - ``cost`` is expressed as a unitless number. - ``location_id`` is always a location ID of the specified location type (e.g., for a type of ``cloud`` this will be an Cloud Region ID). - ``location_type`` is an inventory provider supported location type. - ``latitude`` is a valid latitude corresponding to the *location_id*. - ``longitude`` is a valid longitude corresponding to the *location_id*. - ``city`` (Optional) city corresponding to the *location_id*. - ``state`` (Optional) state corresponding to the *location_id*. - ``country`` (Optional) country corresponding to the *location_id*. - ``region`` (Optional) geographic region corresponding to the *location_id*. - ``complex_name`` (Optional) Name of the complex corresponding to the *location_id*. - ``cloud_owner`` (Optional) refers to the *cloud owner* (e.g., ``azure``, ``aws``, ``att``, etc.). - ``cloud_region_version`` (Optional) is an inventory provider supported version of the cloud region. - ``physical_location_id`` (Optional) is an inventory provider supported CLLI code corresponding to the cloud region. **Examples** **Service Candidate** .. code-block:: json { "candidate_id": "1ac71fb8-ad43-4e16-9459-c3f372b8236d", "candidate_type": "service", "inventory_type": "service", "inventory_provider": "aai", "host_id": "vnf_123456", "cost": "100", "location_id": "DLLSTX9A", "location_type": "azure", "latitude": "32.897480", "longitude": "-97.040443", "city": "Dallas", "state": "TX", "country": "USA", "region": "US", "complex_name": "dalls_one", "cloud_owner": "att-aic", "cloud_region_version": "1.1", "physical_location_id": "DLLSTX9A" } **Cloud Candidate** .. code-block:: json { "candidate_id": "NYCNY55", "candidate_type": "cloud", "inventory_type": "cloud", "inventory_provider": "aai", "cost": "100", "location_id": "NYCNY55", "location_type": "azure", "latitude": "40.7128", "longitude": "-74.0060", "city": "New York", "state": "NY", "country": "USA", "region": "US", "complex_name": "ny_one", "cloud_owner": "att-aic", "cloud_region_version": "1.1", "physical_location_id": "NYCNY55", "flavors": { "flavor":[ { "flavor-id":"9cf8220b-4d96-4c30-a426-2e9382f3fff2", "flavor-name":"flavor-numa-cpu-topology-instruction-set", "flavor-vcpus":64, "flavor-ram":65536, "flavor-disk":1048576, "flavor-ephemeral":128, "flavor-swap":"0", "flavor-is-public":false, "flavor-selflink":"pXtX", "flavor-disabled":false, "hpa-capabilities":{ "hpa-capability":[ { "hpa-capability-id":"01a4bfe1-1993-4fda-bd1c-ef333b4f76a9", "hpa-feature":"cpuInstructionSetExtensions", "hpa-version":"v1", "architecture":"Intel64", "resource-version":"1521306560982", "hpa-feature-attributes":[ { "hpa-attribute-key":"instructionSetExtensions", "hpa-attribute-value":"{\"value\":{['AAA', 'BBB', 'CCC', 'DDD']}}", "resource-version":"1521306560989" } ] }, { "hpa-capability-id":"167ad6a2-7d9c-4bf2-9a1b-30e5311b8c66", "hpa-feature":"numa", "hpa-version":"v1", "architecture":"generic", "resource-version":"1521306561020", "hpa-feature-attributes":[ { "hpa-attribute-key":"numaCpu-1", "hpa-attribute-value":"{\"value\":4}", "resource-version":"1521306561060" }, { "hpa-attribute-key":"numaNodes", "hpa-attribute-value":"{\"value\":2}", "resource-version":"1521306561088" }, { "hpa-attribute-key":"numaCpu-0", "hpa-attribute-value":"{\"value\":2}", "resource-version":"1521306561028" }, { "hpa-attribute-key":"numaMem-0", "hpa-attribute-value":"{\"value\":2, \"unit\":\"GB\" }", "resource-version":"1521306561044" }, { "hpa-attribute-key":"numaMem-1", "hpa-attribute-value":"{\"value\":4, \"unit\":\"GB\" }", "resource-version":"1521306561074" } ] }, { "hpa-capability-id":"13ec6d4d-7fee-48d8-9e4a-c598feb101ed", "hpa-feature":"basicCapabilities", "hpa-version":"v1", "architecture":"generic", "resource-version":"1521306560909", "hpa-feature-attributes":[ { "hpa-attribute-key":"numVirtualCpu", "hpa-attribute-value":"{\"value\":64}", "resource-version":"1521306560932" }, { "hpa-attribute-key":"virtualMemSize", "hpa-attribute-value":"{\"value\":65536, \"unit\":\"MB\" }", "resource-version":"1521306560954" } ] }, { "hpa-capability-id":"8fa22e64-41b4-471f-96ad-6c4708635e4c", "hpa-feature":"cpuTopology", "hpa-version":"v1", "architecture":"generic", "resource-version":"1521306561109", "hpa-feature-attributes":[ { "hpa-attribute-key":"numCpuCores", "hpa-attribute-value":"{\"value\":8}", "resource-version":"1521306561114" }, { "hpa-attribute-key":"numCpuThreads", "hpa-attribute-value":"{\"value\":8}", "resource-version":"1521306561138" }, { "hpa-attribute-key":"numCpuSockets", "hpa-attribute-value":"{\"value\":6}", "resource-version":"1521306561126" } ] } ] }, "resource-version":"1521306560203" }, { "flavor-id":"f5aa2b2e-3206-41b6-80d5-cf041b098c43", "flavor-name":"flavor-cpu-pinning-ovsdpdk-instruction-set", "flavor-vcpus":32, "flavor-ram":131072, "flavor-disk":2097152, "flavor-ephemeral":128, "flavor-swap":"0", "flavor-is-public":false, "flavor-selflink":"pXtX", "flavor-disabled":false, "hpa-capabilities":{ "hpa-capability":[ { "hpa-capability-id":"4d04f4d8-e257-4442-8417-19a525e56096", "hpa-feature":"cpuInstructionSetExtensions", "hpa-version":"v1", "architecture":"generic", "resource-version":"1521306561223", "hpa-feature-attributes":[ { "hpa-attribute-key":"instructionSetExtensions", "hpa-attribute-value":"{\"value\":{['A11', 'B22']}}", "resource-version":"1521306561228" } ] }, { "hpa-capability-id":"8d36a8fe-bfee-446a-bbcb-881ee66c8f78", "hpa-feature":"ovsDpdk", "hpa-version":"v1", "architecture":"generic", "resource-version":"1521306561170", "hpa-feature-attributes":[ { "hpa-attribute-key":"dataProcessingAccelerationLibrary", "hpa-attribute-value":"{\"value\":\"v18.02\"}", "resource-version":"1521306561175" } ] }, { "hpa-capability-id":"c140c945-1532-4908-86c9-d7f71416f1dd", "hpa-feature":"cpuPinning", "hpa-version":"v1", "architecture":"generic", "resource-version":"1521306561191", "hpa-feature-attributes":[ { "hpa-attribute-key":"logicalCpuPinningPolicy", "hpa-attribute-value":"{\"value\":\"dedicated\"}", "resource-version":"1521306561196" }, { "hpa-attribute-key":"logicalCpuThreadPinningPolicy", "hpa-attribute-value":"{value:\"prefer\"}", "resource-version":"1521306561206" } ] }, { "hpa-capability-id":"4565615b-1077-4bb5-a340-c5be48db2aaa", "hpa-feature":"basicCapabilities", "hpa-version":"v1", "architecture":"generic", "resource-version":"1521306561244", "hpa-feature-attributes":[ { "hpa-attribute-key":"numVirtualCpu", "hpa-attribute-value":"{\"value\":32}", "resource-version":"1521306561259" }, { "hpa-attribute-key":"virtualMemSize", "hpa-attribute-value":"{\"value\":131072, \"unit\":\"MB\" }", "resource-version":"1521306561248" } ] } ] }, "resource-version":"1521306561164" } ] } } **vfmodule candidate** .. code-block:: json { "candidate_id": "d187d743-5932-4fb9-a42d-db0a5be5ba7e", "city": "example-city-val-27150", "cloud_owner": "CloudOwner", "cloud_region_version": "1", "complex_name": "clli1", "cost": 1.0, "country": "example-country-val-94173", "existing_placement": "false", "host_id": "vFW-PKG-MC", "inventory_provider": "aai", "inventory_type": "vfmodule", "ipv4-oam-address": "oam_network_zb4J", "ipv6-oam-address": "", "latitude": "example-latitude-val-89101", "location_id": "RegionOne", "location_type": "att_aic", "longitude": "32.89948", "nf-id": "fcbff633-47cc-4f38-a98d-4ba8285bd8b6", "nf-name": "vFW-PKG-MC", "nf-type": "vnf", "passthrough_attributes": { "td-role": "anchor" }, "physical_location_id": "clli1", "port_key": "vlan_port", "region": "example-region-val-13893", "service_instance_id": "3e8d118c-10ca-4b4b-b3db-089b5e9e6a1c", "service_resource_id": "vPGN-XX", "sriov_automation": "false", "state": "example-state-val-59487", "uniqueness": "false", "vf-module-id": "d187d743-5932-4fb9-a42d-db0a5be5ba7e", "vf-module-name": "vnf-pkg-r1-t2-mc", "vim-id": "CloudOwner_RegionOne", "vlan_key": "vlan_key", "vnf-type": "5G_EVE_Demo/5G_EVE_PKG 0", "vservers": [ { "l-interfaces": [ { "interface-id": "4b333af1-90d6-42ae-8389-d440e6ff0e93", "interface-name": "vnf-pkg-r1-t2-mc-vpg_private_2_port-mf7lu55usq7i", "ipv4-addresses": [ "10.100.100.2" ], "ipv6-addresses": [], "macaddr": "fa:16:3e:c4:07:7f", "network-id": "59763a33-3296-4dc8-9ee6-2bdcd63322fc", "network-name": "" }, { "interface-id": "85dd57e9-6e3a-48d0-a784-4598d627e798", "interface-name": "vnf-pkg-r1-t2-mc-vpg_private_1_port-734xxixicw6r", "ipv4-addresses": [ "10.0.110.2" ], "ipv6-addresses": [], "macaddr": "fa:16:3e:b5:86:38", "network-id": "cdb4bc25-2412-4b77-bbd5-791a02f8776d", "network-name": "" }, { "interface-id": "edaff25a-878e-4706-ad52-4e3d51cf6a82", "interface-name": "vnf-pkg-r1-t2-mc-vpg_private_0_port-e5qdm3p5ijhe", "ipv4-addresses": [ "192.168.10.200" ], "ipv6-addresses": [], "macaddr": "fa:16:3e:ff:d8:6f", "network-id": "932ac514-639a-45b2-b1a3-4c5bb708b5c1", "network-name": "" } ], "vserver-id": "00bddefc-126e-4e4f-a18d-99b94d8d9a30", "vserver-name": "zdfw1fwl01pgn01" } ] } **nssi candidate** .. code-block:: json { "candidate_id": "1a636c4d-5e76-427e-bfd6-241a947224b0", "candidate_type": "nssi", "conn_density": 0, "cost": 1.0, "domain": "cn", "e2e_latency": 0, "exp_data_rate": 0, "exp_data_rate_dl": 100, "exp_data_rate_ul": 100, "instance_name": "nssi_test_0211", "inventory_provider": "aai", "inventory_type": "nssi", "jitter": 0, "latency": 20, "max_number_of_ues": 0, "nsi_id": "4115d3c8-dd59-45d6-b09d-e756dee9b518", "nsi_model_invariant_id": "39b10fe6-efcc-40bc-8184-c38414b80771", "nsi_model_version_id": "8b664b11-6646-4776-9f59-5c3de46da2d6", "nsi_name": "nsi_test_0211", "payload_size": 0, "reliability": 99.99, "resource_sharing_level": "0", "survival_time": 0, "traffic_density": 0, "ue_mobility_level": "stationary", "uniqueness": "true" } **Examples** The following examples illustrate two demands: - ``vGMuxInfra``: A vGMuxInfra service, drawing candidates of type *service* from the inventory. Only candidates that match the customer_id and orchestration-status will be included in the search space. - ``vG``: A vG, drawing candidates of type *service* and *cloud* from the inventory. Only candidates that match the customer_id and provisioning-status will be included in the search space. .. code:: yaml demands: vGMuxInfra: - inventory_provider: aai inventory_type: service attributes: equipment_type: vG_Mux customer_id: some_company orchestration-status: Activated model-id: 174e371e-f514-4913-a93d-ed7e7f8fbdca model-version: 2.0 vG: - inventory_provider: aai inventory_type: service attributes: equipment_type: vG customer_id: some_company provisioning-status: provisioned - inventory_provider: aai inventory_type: cloud **Note** - Cost could be used to specify the cost of choosing a specific candidate. For example, choosing an existing VNF instance can be less costlier than creating a new instance. Constraints ----------- A **Constraint** is used to *eliminate* inventory candidates from one or more demands that do not meet the requirements specified by the constraint. Since reusability is one of the cornerstones of HAS, Constraints are designed to be service-agnostic, and is parameterized such that it can be reused across a wide range of services. Further, HAS is designed with a plug-in architecture that facilitates easy addition of new constraint types. Constraints are denoted by a ``constraints`` key. Each constraint is uniquely named and set to a dictionary containing a constraint type, a list of demands to apply the constraint to, and a dictionary of constraint properties. **Considerations while using multiple constraints** \* Constraints should be treated as a unordered list, and no assumptions should be made as regards to the order in which the constraints are evaluated for any given demand. \* All constraints are effectively AND-ed together. Constructs such as “Constraint X OR Y” are unsupported. \* Constraints are reducing in nature, and does not increase the available candidates at any point during the constraint evaluations. **Schema** +-------------------------------------------+--------------------------+ | Key | Value | +===========================================+==========================+ | ``CONSTRAINT_NAME`` | Key is a unique name. | +-------------------------------------------+--------------------------+ | ``type`` | The type of constraint. | | | See **Constraint Types** | | | for a list of currently | | | supported values. | +-------------------------------------------+--------------------------+ | ``demands`` | One or more previously | | | declared demands. If | | | only one demand is | | | specified, it may appear | | | without list markers | | | (``[]``). | +-------------------------------------------+--------------------------+ | ``properties`` (Optional) | Properties particular to | | | the specified constraint | | | type. Use if required by | | | the constraint. | +-------------------------------------------+--------------------------+ .. code:: yaml constraints: CONSTRAINT_NAME_1: type: CONSTRAINT_TYPE demands: DEMAND_NAME | [DEMAND_NAME_1, DEMAND_NAME_2, ...] properties: PROPERTY_DICT CONSTRAINT_NAME_2: type: CONSTRAINT_TYPE demands: DEMAND_NAME | [DEMAND_NAME_1, DEMAND_NAME_2, ...] properties: PROPERTY_DICT ... Constraint Types ~~~~~~~~~~~~~~~~ +-------------------------------------------+--------------------------+ | Type | Description | +===========================================+==========================+ | ``attribute`` | Constraint that matches | | | the specified list of | | | Attributes. | +-------------------------------------------+--------------------------+ | ``distance_between_demands`` | Geographic distance | | | constraint between each | | | pair of a list of | | | demands. | +-------------------------------------------+--------------------------+ | ``distance_to_location`` | Geographic distance | | | constraint between each | | | of a list of demands and | | | a specific location. | +-------------------------------------------+--------------------------+ | ``instance_fit`` | Constraint that ensures | | | available capacity in an | | | existing service | | | instance for an incoming | | | demand. | +-------------------------------------------+--------------------------+ | ``inventory_group`` | Constraint that enforces | | | two or more demands are | | | satisfied using | | | candidates from a | | | pre-established group in | | | the inventory. | +-------------------------------------------+--------------------------+ | ``region_fit`` | Constraint that ensures | | | available capacity in an | | | existing cloud region | | | for an incoming demand. | +-------------------------------------------+--------------------------+ | ``zone`` | Constraint that enforces | | | co-location/diversity at | | | the granularities of | | | clouds/regions/availabil | | | ity-zones. | +-------------------------------------------+--------------------------+ | ``hpa`` | Constraint that | | | recommends cloud region | | | with an optimal flavor | | | based on required HPA | | | capabilities for an | | | incoming demand. | +-------------------------------------------+--------------------------+ | ``vim_fit`` | Constraint that checks if| | | the incoming demand fits | | | the VIM instance. | +-------------------------------------------+--------------------------+ | ``license`` (Deferred) | License availability | | | constraint. | +-------------------------------------------+--------------------------+ | ``network_between_demands`` (Deferred) | Network constraint | | | between each pair of a | | | list of demands. | +-------------------------------------------+--------------------------+ | ``network_to_location`` (Deferred) | Network constraint | | | between each of a list | | | of demands and a | | | specific | | | location/address. | +-------------------------------------------+--------------------------+ | ``threshold`` | Constraint that checks if| | | an attribute is within | | | the threshold. | +-------------------------------------------+--------------------------+ *Note: Constraint names marked “Deferred” **will not** be supported in the current release of HAS.* Threshold Values ~~~~~~~~~~~~~~~~ Constraint property values representing a threshold may be an integer or floating point number, optionally prefixed with a comparison operator: ``=``, ``<``, ``>``, ``<=``, or ``>=``. The default is ``=`` and optionally suffixed with a unit. Whitespace may appear between the comparison operator and value, and between the value and units. When a range values is specified (e.g., ``10-20 km``), the comparison operator is omitted. Each property is documented with a default unit. The following units are supported: +------------+------------------------------+----------+ | Unit | Values | Default | +============+==============================+==========+ | Currency | ``USD`` | ``USD`` | +------------+------------------------------+----------+ | Time | ``ms``, ``sec`` | ``ms`` | +------------+------------------------------+----------+ | Distance | ``km``, ``mi`` | ``km`` | +------------+------------------------------+----------+ | Throughput | ``Kbps``, ``Mbps``, ``Gbps`` | ``Mbps`` | +------------+------------------------------+----------+ Attribute ~~~~~~~~~ Constrain one or more demands by one or more attributes, expressed as properties. Attributes are mapped to the **inventory provider** specified properties, referenced by the demands. For example, properties could be hardware capabilities provided by the platform (flavor, CPU-Pinning, NUMA), features supported by the services, etc. **Schema** +--------------+---------------------------------------------------------+ | Property | Value | +==============+=========================================================+ | ``evaluate`` | Opaque dictionary of attribute name and value pairs. | | | Values must be strings or numbers. Encoded and sent to | | | the service provider via a plugin. | +--------------+---------------------------------------------------------+ *Note: Attribute values are not detected/parsed as thresholds by the Homing framework. Such interpretations and evaluations are inventory provider-specific and delegated to the corresponding plugin* .. code:: yaml constraints: sriov_nj: type: attribute demands: [my_vnf_demand, my_other_vnf_demand] properties: evaluate: cloud_version: 1.1 flavor: SRIOV subdivision: US-TX vcpu_pinning: True numa_topology: numa_spanning Proposal: Evaluation Operators ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ To assist in evaluating attributes, the following operators and notation are proposed: +-----------+-----------+------------------------------------------------+ | Operator | Name | Operand | +===========+===========+================================================+ | ``eq`` | ``==`` | Any object (string, number, list, dict) | +-----------+-----------+------------------------------------------------+ | ``ne`` | ``!=`` | | +-----------+-----------+------------------------------------------------+ | ``lt`` | ``<`` | A number (strings are converted to float) | +-----------+-----------+------------------------------------------------+ | ``gt`` | ``>`` | | +-----------+-----------+------------------------------------------------+ | ``lte`` | ``<=`` | | +-----------+-----------+------------------------------------------------+ | ``gte`` | ``>=`` | | +-----------+-----------+------------------------------------------------+ | ``any`` | ``Any`` | A list of objects (string, number, list, dict) | +-----------+-----------+------------------------------------------------+ | ``all`` | ``All`` | | +-----------+-----------+------------------------------------------------+ | ``regex`` | ``RegEx`` | A regular expression pattern | +-----------+-----------+------------------------------------------------+ Example usage: .. code:: yaml constraints: sriov_nj: type: attribute demands: [my_vnf_demand, my_other_vnf_demand] properties: evaluate: cloud_version: {gt: 1.0} flavor: {regex: /^SRIOV$/i} subdivision: {any: [US-TX, US-NY, US-CA]} Distance Between Demands ~~~~~~~~~~~~~~~~~~~~~~~~ Constrain each pairwise combination of two or more demands by distance requirements. **Schema** +--------------+------------------------------------------------------------+ | Name | Value | +==============+============================================================+ | ``distance`` | Distance between demands, measured by the geographic path. | +--------------+------------------------------------------------------------+ The constraint is applied between each pairwise combination of demands. For this reason, at least two demands must be specified, implicitly or explicitly. .. code:: yaml constraints: distance_vnf1_vnf2: type: distance_between_demands demands: [my_vnf_demand, my_other_vnf_demand] properties: distance: < 250 km Distance To Location ~~~~~~~~~~~~~~~~~~~~ Constrain one or more demands by distance requirements relative to a specific location. **Schema** +--------------+------------------------------------------------------------+ | Property | Value | +==============+============================================================+ | ``distance`` | Distance between demands, measured by the geographic path. | +--------------+------------------------------------------------------------+ | ``location`` | A previously declared location. | +--------------+------------------------------------------------------------+ The constraint is applied between each demand and the referenced location, not across all pairwise combinations of Demands. .. code:: yaml constraints: distance_vnf1_loc: type: distance_to_location demands: [my_vnf_demand, my_other_vnf_demand, another_vnf_demand] properties: distance: < 250 km location: LOCATION_ID Instance Fit ~~~~~~~~~~~~ Constrain each demand by its service requirements. Requirements are sent as a request to a **service controller**. Service controllers are defined by plugins in Homing (e.g., ``sdn-c``). A service controller plugin knows how to communicate with a particular endpoint (via HTTP/REST, DMaaP, etc.), obtain necessary information, and make a decision. The endpoint and credentials can be configured through plugin settings. **Schema** +---------------------+------------------------------------------------+ | Property | Description | +=====================+================================================+ | ``controller`` | Name of a service controller. | +---------------------+------------------------------------------------+ | ``request`` | Opaque dictionary of key/value pairs. Values | | | must be strings or numbers. Encoded and sent | | | to the service provider via a plugin. | +---------------------+------------------------------------------------+ .. code:: yaml constraints: check_for_availability: type: instance_fit demands: [my_vnf_demand, my_other_vnf_demand] properties: controller: sdn-c request: REQUEST_DICT Region Fit ~~~~~~~~~~ Constrain each demand’s inventory candidates based on inventory provider membership. Requirements are sent as a request to a **service controller**. Service controllers are defined by plugins in Homing (e.g., ``sdn-c``). A service controller plugin knows how to communicate with a particular endpoint (via HTTP/REST, DMaaP, etc.), obtain necessary information, and make a decision. The endpoint and credentials can be configured through plugin settings. **Schema** +---------------------+------------------------------------------------+ | Property | Description | +=====================+================================================+ | ``controller`` | Name of a service controller. | +---------------------+------------------------------------------------+ | ``request`` | Opaque dictionary of key/value pairs. Values | | | must be strings or numbers. Encoded and sent | | | to the service provider via a plugin. | +---------------------+------------------------------------------------+ .. code:: yaml constraints: check_for_membership: type: region_fit demands: [my_vnf_demand, my_other_vnf_demand] properties: controller: sdn-c request: REQUEST_DICT Zone ~~~~ Constrain two or more demands such that each is located in the same or different zone category. Zone categories are inventory provider-defined, based on the demands being constrained. **Schema** +---------------+--------------------------------------------------------+ | Property | Value | +===============+========================================================+ | ``qualifier`` | Zone qualifier. One of ``same`` or ``different``. | | | | +---------------+--------------------------------------------------------+ | ``category`` | Zone category. One of ``disaster``, ``region``, | | | ``complex``, ``time``, or ``maintenance``. | +---------------+--------------------------------------------------------+ For example, to place two demands in different disaster zones: .. code:: yaml constraints: vnf_diversity: type: zone demands: [my_vnf_demand, my_other_vnf_demand] properties: qualifier: different category: disaster Or, to place two demands in the same region: .. code:: yaml constraints: vnf_affinity: type: zone demands: [my_vnf_demand, my_other_vnf_demand] properties: qualifier: same category: region **Notes** - These categories could be any of the following: ``disaster_zone``, ``region``, ``complex``, ``time_zone``, and ``maintenance_zone``. Really, we are talking affinity/anti-affinity at the level of DCs, but these terms may cause confusion with affinity/anti-affinity in OpenStack. HPA & Cloud Agnostic Intent ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Constrain each demand's inventory candidates based on cloud regions' Hardware platform capabilities (HPA) and also intent support. Note that currently HPA the cloud agnostic constraints will use the same schema. Requirements mapped to the inventory provider specified properties, referenced by the demands. For eg, properties could be hardware capabilities provided by the platform through flavors or cloud-region eg:(CPU-Pinning, NUMA), features supported by the services, etc. **Schema** +---------------+--------------------------------------------------------+ | Property | Value | +===============+========================================================+ | ``evaluate`` | List of id, type, directives and flavorProperties of | | | each VM of the VNF demand. | +---------------+--------------------------------------------------------+ +-------------------------+--------------------------------------------------------+ | Property for evaluation | Value | +=========================+========================================================+ | ``id`` | Name of VFC | +-------------------------+--------------------------------------------------------+ | ``type`` | Type of VFC. Could be ``vnfc`` or ``tocsa.nodes.nfv. | | | Vdu.Compute`` according to different models | +-------------------------+--------------------------------------------------------+ | ``directives`` | Directives for one VFC. Now we only have flavor | | | directives inside. Each VFC must have one directive | +-------------------------+--------------------------------------------------------+ | ``flavorProperties`` | Flavor properties for one VFC. Contains detailed | | | HPA requirements | +-------------------------+--------------------------------------------------------+ +--------------------------+-------------------------------------------+ | Property for directives | Value | +==========================+===========================================+ | ``type`` | Type of directive | +--------------------------+-------------------------------------------+ | ``attributes`` | Attributes inside directive | +--------------------------+-------------------------------------------+ +--------------------------+-------------------------------------------+ | Property for attributes | Value | +==========================+===========================================+ | ``attribute_name`` | Attribute name/label | +--------------------------+-------------------------------------------+ | ``attributes_value`` | Attributes value | +--------------------------+-------------------------------------------+ *Note*: Each VFC must have one directive with type 'flavor_directives' to put the flavors inside. The ``attribute_name`` is the place to put flavor label and the ``attribute_value`` will first left blank. After getting the proper flavor, OOF will merge the flavor name into the ``attribute_value`` inside flavor directives. Also, all the directives coming from one VFC inside the same request will be merged together in ``directives``, as they are using the same structure as 'directives'. .. code:: yaml constraints: hpa_constraint: type: hpa demands: [my_vnf_demand, my_other_vnf_demand] properties: evaluate: - [ List of {id: {vdu Name}, type: {type of VF }, directives: DIRECTIVES LIST, flavorProperties: HPACapability DICT} ] HPACapability DICT : hpa-feature: basicCapabilities hpa-version: v1 architecture: generic directives: - DIRECTIVES LIST hpa-feature-attributes: - HPAFEATUREATTRIBUTES LIST DIRECTIVES LIST: type: String attributes: - ATTRIBUTES LIST ATTRIBUTES LIST: attribute_name: String, attribute_value: String HPAFEATUREATTRIBUTES LIST: hpa-attribute-key: String hpa-attribute-value: String operator: One of OPERATOR unit: String OPERATOR : ['=', '<', '>', '<=', '>=', 'ALL'] **Example** Example for HEAT request(SO) *Note*: Where "attributes":[{"attribute_name":" oof_returned_flavor_label_for_vgw_1 ", Admin needs to ensure that this value is same as flavor parameter in HOT .. code-block:: json { "hpa_constraint":{ "type":"hpa", "demands":[ "vG" ], "properties":{ "evaluate":[ { "id": "vgw_0", "type": "vnfc", "directives": [ { "type":"flavor_directives", "attributes":[ { "attribute_name":" oof_returned_flavor_label_for_vgw_0 ", "attribute_value": "" } ] } ], "flavorProperties":[ { "hpa-feature":"basicCapabilities", "hpa-version":"v1", "architecture":"generic", "mandatory": "True", "directives": [], "hpa-feature-attributes":[ { "hpa-attribute-key":"numVirtualCpu", "hpa-attribute-value":"32", "operator":"=" } ] }, { "hpa-feature":"basicCapabilities", "hpa-version":"v1", "architecture":"generic", "mandatory": "True", "directives": [], "hpa-feature-attributes":[ { "hpa-attribute-key":"virtualMemSize", "hpa-attribute-value":"64", "operator":"=", "unit":"GB" } ] }, { "hpa-feature":"ovsDpdk", "hpa-version":"v1", "architecture":"generic", "mandatory": "False", "score": "10", "directives": [], "hpa-feature-attributes":[ { "hpa-attribute-key":"dataProcessingAccelerationLibrary", "hpa-attribute-value":"v18.02", "operator":"=" } ] }, { "hpa-feature": "qosIntentCapabilities", "mandatory": "True", "architecture": "generic", "hpa-version": "v1", "directives": [], "hpa-feature-attributes": [ { "hpa-attribute-key":"Infrastructure Resource Isolation for VNF", "hpa-attribute-value": "Burstable QoS", "operator": "=", "unit": "" }, { "hpa-attribute-key":"Burstable QoS Oversubscription Percentage", "hpa-attribute-value": "25", "operator": "=", "unit": "" } ] } ] }, { "id": "vgw_1", "type": "vnfc", "directives": [ { "type":"flavor_directives", "attributes":[ { "attribute_name":" oof_returned_flavor_label_for_vgw_1 ", "attribute_value": "" } ] } ], "flavorProperties":[ { "hpa-feature":"basicCapabilities", "hpa-version":"v1", "architecture":"generic", "mandatory": "False", "score": "5", "directives": [], "hpa-feature-attributes":[ { "hpa-attribute-key":"numVirtualCpu", "hpa-attribute-value":"8", "operator":">=" } ] }, { "hpa-feature":"basicCapabilities", "hpa-version":"v1", "architecture":"generic", "mandatory": "False", "score": "5", "directives": [], "hpa-feature-attributes":[ { "hpa-attribute-key":"virtualMemSize", "hpa-attribute-value":"16", "operator":">=", "unit":"GB" } ] }, { "hpa-feature":"sriovNICNetwork", "hpa-version":"v1", "architecture":"generic", "mandatory": "True", "directives": [ { "type": "sriovNICNetwork_directives", "attributes": [ { "attribute_name": "oof_returned_vnic_type_for_vgw_1", "attribute_value": "direct" }, { "attribute_name": "oof_returned_provider_network_for_vgw_1", "attribute_value": "physnet2" } ] } ], "hpa-feature-attributes":[ { "hpa-attribute-key":"pciVendorId", "hpa-attribute-value":"8086", "operator":"=", "unit":"" }, { "hpa-attribute-key":"pciDeviceId", "hpa-attribute-value":"0443", "operator":"=", "unit":"" }, { "hpa-attribute-key":"pciCount", "hpa-attribute-value":"1", "operator":"=", "unit":"" }, { "hpa-attribute-key":"physicalNetwork", "hpa-attribute-value":"physnet2", "operator":"=", "unit":"" } ] } ] } ] } } } Example for Pure TOSCA request(VF-C) .. code-block:: json { "hpa_constraint":{ "type":"hpa", "demands":[ "vG" ], "properties":{ "evaluate":[ { "id": "vgw_0", "type": "tocsa.nodes.nfv.Vdu.Compute", "directives": [ { "type":"flavor_directives", "attributes":[ { "attribute_name":" flavor_name ", "attribute_value": "" } ] } ], "flavorProperties":[ { "hpa-feature":"basicCapabilities", "hpa-version":"v1", "architecture":"generic", "mandatory": "True", "directives": [], "hpa-feature-attributes":[ { "hpa-attribute-key":"numVirtualCpu", "hpa-attribute-value":"32", "operator":"=" } ] }, { "hpa-feature":"basicCapabilities", "hpa-version":"v1", "architecture":"generic", "mandatory": "True", "directives": [], "hpa-feature-attributes":[ { "hpa-attribute-key":"virtualMemSize", "hpa-attribute-value":"64", "operator":"=", "unit":"GB" } ] }, { "hpa-feature":"ovsDpdk", "hpa-version":"v1", "architecture":"generic", "mandatory": "False", "score": "10", "directives": [], "hpa-feature-attributes":[ { "hpa-attribute-key":"dataProcessingAccelerationLibrary", "hpa-attribute-value":"v18.02", "operator":"=" } ] }, { "hpa-feature": "qosIntentCapabilities", "mandatory": "True", "architecture": "generic", "hpa-version": "v1", "directives": [], "hpa-feature-attributes": [ { "hpa-attribute-key":"Infrastructure Resource Isolation for VNF", "hpa-attribute-value": "Burstable QoS", "operator": "=", "unit": "" }, { "hpa-attribute-key":"Burstable QoS Oversubscription Percentage", "hpa-attribute-value": "25", "operator": "=", "unit": "" } ] } ] }, { "id": "vgw_1", "type": "tosca.nodes.nfv.Vdu.Compute", "directives": [ { "type":"flavor_directives", "attributes":[ { "attribute_name":" flavor_name ", "attribute_value": "" } ] } ], "flavorProperties":[ { "hpa-feature":"basicCapabilities", "hpa-version":"v1", "architecture":"generic", "mandatory": "False", "score": "5", "directives": [], "hpa-feature-attributes":[ { "hpa-attribute-key":"numVirtualCpu", "hpa-attribute-value":"8", "operator":">=" } ] }, { "hpa-feature":"basicCapabilities", "hpa-version":"v1", "architecture":"generic", "mandatory": "False", "score": "5", "directives": [], "hpa-feature-attributes":[ { "hpa-attribute-key":"virtualMemSize", "hpa-attribute-value":"16", "operator":">=", "unit":"GB" } ] }, { "hpa-feature":"sriovNICNetwork", "hpa-version":"v1", "architecture":"generic", "mandatory": "True", "directives": [], "hpa-feature-attributes":[ { "hpa-attribute-key":"pciVendorId", "hpa-attribute-value":"8086", "operator":"=", "unit":"" }, { "hpa-attribute-key":"pciDeviceId", "hpa-attribute-value":"0443", "operator":"=", "unit":"" }, { "hpa-attribute-key":"pciCount", "hpa-attribute-value":"1", "operator":"=", "unit":"" }, ] } ] } ] } } } VIM Fit ~~~~~~~ Constrain each demand's inventory candidates based on capacity check for available capacity at the VIM instances. Requirements are sent as an opaque request object understood by the VIM controllers or MultiCloud. Each controller is defined and implemented as a plugin in Conductor. A vim controller plugin knows how to communicate with a particular endpoint (via HTTP/REST, DMaaP, etc.), obtain necessary information, and make a decision. The endpoint and credentials can be configured through plugin settings. **Schema** +----------------+--------------------------------------------------------+ | Property | Value | +================+========================================================+ | ``controller`` | Name of a vim controller. (e.g., multicloud) | +----------------+--------------------------------------------------------+ | ``request`` | Opaque dictionary of key/value pairs. Values | | | must be strings or numbers. Encoded and sent | | | to the vim controller via a plugin. | +----------------+--------------------------------------------------------+ .. code:: yaml constraints: check_cloud_capacity: type: vim_fit demands: [my_vnf_demand, my_other_vnf_demand] properties: controller: multicloud request: REQUEST_DICT **Notes** - For the current release the REQUEST_DICT is of the following format as defined by the policy for vim_fit. The REQUEST_DICT is an opaque request object defined through policy, so it is not restricted to this format. In the current release MultiCloud supports the check_vim_capacity using the following grammar. .. code-block:: json { "request":{ "vCPU":10, "Memory":{ "quantity":{ "get_param":"REQUIRED_MEM" }, "unit":"GB" }, "Storage":{ "quantity":{ "get_param":"REQUIRED_DISK" }, "unit":"GB" } } } Inventory Group ~~~~~~~~~~~~~~~ Constrain demands such that inventory items are grouped across two demands. This constraint has no properties. .. code:: yaml constraints: my_group: type: inventory_group demands: [demand_1, demand_2] *Note: Only pair-wise groups are supported at this time. The list must have only two demands.* License ~~~~~~~ Constrain demands according to license availability. *Support for this constraint is deferred to a later release.* **Schema** +----------+----------------------------------------------------------+ | Property | Value | +==========+==========================================================+ | ``id`` | Unique license identifier | +----------+----------------------------------------------------------+ | ``key`` | Opaque license key, particular to the license identifier | +----------+----------------------------------------------------------+ .. code:: yaml constraints: my_software: type: license demands: [demand_1, demand_2, ...] properties: id: SOFTWARE_ID key: LICENSE_KEY Network Between Demands ~~~~~~~~~~~~~~~~~~~~~~~ Constrain each pairwise combination of two or more demands by network requirements. *Support for this constraint is deferred to a later release.* **Schema** +-------------------+--------------------------------------------------+ | Property | Value | +===================+==================================================+ | ``bandwidth`` | Desired network bandwidth. | | (Optional) | | +-------------------+--------------------------------------------------+ | ``distance`` | Desired distance between demands, measured by | | (Optional) | the network path. | +-------------------+--------------------------------------------------+ | ``latency`` | Desired network latency. | | (Optional) | | +-------------------+--------------------------------------------------+ Any combination of ``bandwidth``, ``distance``, or ``latency`` must be specified. If none of these properties are used, it is treated as a malformed request. The constraint is applied between each pairwise combination of demands. For this reason, at least two demands must be specified, implicitly or explicitly. .. code:: yaml constraints: network_requirements: type: network_between_demands demands: [my_vnf_demand, my_other_vnf_demand] properties: bandwidth: >= 1000 Mbps distance: < 250 km latency: < 50 ms Network To Location ~~~~~~~~~~~~~~~~~~~ Constrain one or more demands by network requirements relative to a specific location. *Support for this constraint is deferred to a later release.* **Schema** +-----------------------------------+-----------------------------------+ | Property | Value | +===================================+===================================+ | ``bandwidth`` | Desired network bandwidth. | +-----------------------------------+-----------------------------------+ | ``distance`` | Desired distance between demands, | | | measured by the network path. | +-----------------------------------+-----------------------------------+ | ``latency`` | Desired network latency. | +-----------------------------------+-----------------------------------+ | ``location`` | A previously declared location. | +-----------------------------------+-----------------------------------+ Any combination of ``bandwidth``, ``distance``, or ``latency`` must be specified. If none of these properties are used, it is treated as a malformed request. The constraint is applied between each demand and the referenced location, not across all pairwise combinations of Demands. .. code:: yaml constraints: my_access_network_constraint: type: network_to_location demands: [my_vnf_demand, my_other_vnf_demand] properties: bandwidth: >= 1000 Mbps distance: < 250 km latency: < 50 ms location: LOCATION_ID Capabilities ~~~~~~~~~~~~ Constrain each demand by its cluster capability requirements. For example, as described by an OpenStack Heat template and operational environment. *Support for this constraint is deferred to a later release.* **Schema** +-------------------+---------------------------------------------------------+ | Property | Value | +===================+=========================================================+ | ``specification`` | Indicates the kind of specification being provided in | | | the properties. Must be ``heat``. Future values may | | | include ``tosca``, ``Homing``, etc. | +-------------------+---------------------------------------------------------+ | ``template`` | For specifications of type ``heat``, a single stack in | | | OpenStack Heat Orchestration Template (HOT) format. | | | Stacks may be expressed as a URI reference or a string | | | of well-formed YAML/JSON. Templates are validated by | | | the Heat service configured for use by HAS. Nested | | | stack references are unsupported. | +-------------------+---------------------------------------------------------+ | ``environment`` | For specifications of type ``heat``, an optional Heat | | | environment. Environments may be expressed as a URI | | (Optional) | reference or a string of well-formed YAML/JSON. | | | Environments are validated by the Heat service | | | configured for use by Homing. | +-------------------+---------------------------------------------------------+ .. code:: yaml constraints: check_for_fit: type: capability demands: [my_vnf_demand, my_other_vnf_demand] properties: specification: heat template: http://repository/my/stack_template environment: http://repository/my/stack_environment Threshold ~~~~~~~~~ Constrain each demand by an attribute which is within a certain threshold. **Schema** +---------------+--------------------------------------------------------+ | Property | Value | +===============+========================================================+ | ``evaluate`` | List of attributes and its threshold | +---------------+--------------------------------------------------------+ +-------------------------+------------------------------------------+ | Property for evaluation | Value | +=========================+==========================================+ | ``attribute`` | Attribute of a candidate | +-------------------------+------------------------------------------+ | ``threshold`` | Threshold Value | +-------------------------+------------------------------------------+ | ``operator`` | Condition to check. Supported Values are | | | ``gte``, ``lte``, ``lt``, ``gt``, ``eq`` | +-------------------------+------------------------------------------+ | ``unit`` (optional) | Attribute's unit of measurement | +-------------------------+------------------------------------------+ .. code:: yaml urllc_threshold: type: threshold demands: ['URLLC'] properties: evaluate: - attribute: latency operator: lte threshold: 50 unit: ms - attribute: reliability operator: gte threshold: 99.99 **Note:** - The status of the constraint support is of Frankfurt release. Reservations ------------ A **Reservation** allows reservation of resources associated with candidate that satisfies one or more demands. Similar to the *instance_fit* constraint, requirements are sent as a request to a **service controller** that handles the reservation. Service controllers are defined by plugins in Homing (e.g., ``sdn-c``). The service controller plugin knows how to make a reservation (and initiate rollback on a failure) with a particular endpoint (via HTTP/REST, DMaaP, etc.) of the service controller. The endpoint and credentials can be configured through plugin settings. **Schema** +---------------------+------------------------------------------------+ | Property | Description | +=====================+================================================+ | ``controller`` | Name of a service controller. | +---------------------+------------------------------------------------+ | ``request`` | Opaque dictionary of key/value pairs. Values | | | must be strings or numbers. Encoded and sent | | | to the service provider via a plugin. | +---------------------+------------------------------------------------+ .. code:: yaml resource_reservation: type: instance_reservation demands: [my_vnf_demand, my_other_vnf_demand] properties: controller: sdn-c request: REQUEST_DICT Optimizations ------------- An **Optimization** allows specification of a objective function, which aims to maximize or minimize a certain value that varies based on the choice of candidates for one or more demands that are a part of the objective function. For example, an objective function may be to find the *closest* cloud-region to a customer to home a demand. Optimization Components ~~~~~~~~~~~~~~~~~~~~~~~ Optimization definitions can be broken down into three components: +-------+----------------+--------------------------------------------+ | Compo | Key | Value | | nent | | | +=======+================+============================================+ | Goal | ``minimize`` | A single Operand (usually ``sum``) or | | | | Function | +-------+----------------+--------------------------------------------+ | Opera | ``sum``, | Two or more Operands (Numbers, Operators, | | tor | ``product`` | Functions) | +-------+----------------+--------------------------------------------+ | Funct | ``distance_bet | A two-element list consisting of a | | ion | ween`` | location and demand. | +-------+----------------+--------------------------------------------+ .. _example-1: Example ~~~~~~~ Given a customer location ``cl``, two demands ``vG1`` and ``vG2``, and weights ``w1`` and ``w2``, the optimization criteria can be expressed as: ``minimize(weight1 * distance_between(cl, vG1) + weight2 * distance_between(cl, vG2))`` This can be read as: “Minimize the sum of weighted distances from cl to vG1 and from cl to vG2.” Such optimizations may be expressed in a template as follows: .. code:: yaml parameters: w1: 10 w2: 20 optimization: minimize: sum: - product: - {get_param: w1} - {distance_between: [cl, vG1]} - product: - {get_param: w2} - {distance_between: [cl, vG2]} Or without the weights as: .. code:: yaml optimization: minimize: sum: - {distance_between: [cl, vG1]} - {distance_between: [cl, vG2]} **Template Restriction** While the template format supports any number of arrangements of numbers, operators, and functions, HAS’s solver presently expects a very specific arrangement. - Optimizations must conform to a single goal of ``minimize`` followed by a ``sum`` operator. - The sum can consist of two ``distance_between`` function calls, or two ``product`` operators. - If a ``product`` operator is present, it must contain at least a ``distance_between`` function call, plus one optional number to be used for weighting. - Numbers may be referenced via ``get_param``. - The objective function has to be written in the sum-of-product format. In the future, HAS can convert product-of-sum into sum-of-product automatically. The first two examples in this section illustrate both of these use cases. **Inline Operations** If desired, operations can be rewritten inline. For example, the two ``product`` operations from the previous example can also be expressed as: .. code:: yaml parameters: w1: 10 w2: 20 optimization: minimize: sum: - {product: [{get_param: w1}, {distance_between: [cl, vG1]}]} - {product: [{get_param: w2}, {distance_between: [cl, vG2]}]} In turn, even the ``sum`` operation can be rewritten inline, however there is a point of diminishing returns in terms of readability! **Notes** - We do not support more than one dimension in the optimization (e.g., Minimize distance and cost). For supporting multiple dimensions we would need a function the normalize the unit across dimensions. Intrinsic Functions ------------------- Homing provides a set of intrinsic functions that can be used inside templates to perform specific tasks. The following section describes the role and syntax of the intrinsic functions. Functions are written as a dictionary with one key/value pair. The key is the function name. The value is a list of arguments. If only one argument is provided, a string may be used instead. .. code:: yaml a_property: {FUNCTION_NAME: [ARGUMENT_LIST]} a_property: {FUNCTION_NAME: ARGUMENT_STRING} *Note: These functions can only be used within “properties” sections.* get_file ~~~~~~~~ The ``get_file`` function inserts the content of a file into the template. It is generally used as a file inclusion mechanism for files containing templates from other services (e.g., Heat). The syntax of the ``get_file`` function is: .. code:: yaml {get_file: } The ``content`` key is used to look up the ``files`` dictionary that is provided in the REST API call. The Homing client command (``Homing``) is ``get_file`` aware and populates the ``files`` dictionary with the actual content of fetched paths and URLs. The Homing client command supports relative paths and transforms these to the absolute URLs required by the Homing API. **Note**: The ``get_file`` argument must be a static path or URL and not rely on intrinsic functions like ``get_param``. The Homing client does not process intrinsic functions. They are only processed by the Homing engine. The example below demonstrates the ``get_file`` function usage with both relative and absolute URLs: .. code:: yaml constraints: check_for_fit: type: capacity demands: [my_vnf_demand, my_other_vnf_demand] properties: template: {get_file: stack_template.yaml} environment: {get_file: http://hostname/environment.yaml} The ``files`` dictionary generated by the Homing client during instantiation of the plan would contain the following keys. Each value would be of that file’s contents. - ``file:///path/to/stack_template.yaml`` - ``http://hostname/environment.yaml`` **Note** - If Homing will only be accessed over DMaaP, files will need to be embedded using the Homing API request format. This will be a consideration when DMaaP integration happens. get_param ~~~~~~~~~ The ``get_param`` function references an input parameter of a template. It resolves to the value provided for this input parameter at runtime. The syntax of the ``get_param`` function is: .. code:: yaml {get_param: } {get_param: [, (optional), (optional), ...]} **parameter name** is the parameter name to be resolved. If the parameters returns a complex data structure such as a list or a dict, then subsequent keys or indices can be specified. These additional parameters are used to navigate the data structure to return the desired value. Indices are zero-based. The following example demonstrates how the ``get_param`` function is used: .. code:: yaml parameters: software_id: SOFTWARE_ID license_key: LICENSE_KEY service_info: provider: dmaap:///full.topic.name costs: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] constraints: my_software: type: license demands: [demand_1, demand_2, ...] properties: id: {get_param: software_id} key: {get_param: license_key} check_for_availability: type: service demands: [my_vnf_demand, my_other_vnf_demand] properties: provider_url: {get_param: [service_info, provider]} request: REQUEST_DICT cost: {get_param: [service_info, costs, 4]} In this example, properties would be set as follows: +------------------+--------------------------+ | Key | Value | +==================+==========================+ | ``id`` | SOFTWARE_ID | +------------------+--------------------------+ | ``key`` | LICENSE_KEY | +------------------+--------------------------+ | ``provider_url`` | dmaap:///full.topic.name | +------------------+--------------------------+ | ``cost`` | 50 | +------------------+--------------------------+ Contact ------- Shankar Narayanan shankarpnsn@gmail.com