
OpenECOMP Application
Controller

User Guide

Revision 1.0.0
Revision Date 17 January 2017

Copyright © 2017 AT&T Intellectual Property.

Copyright © 2017 Amdocs

All rights reserved.

Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); you may not

use this documentation except in compliance with the License.

You may obtain a copy of the License at

 https://creativecommons.org/licenses/by/4.0/

Unless required by applicable law or agreed to in writing, software distributed under the License is

distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,

either express or implied. See the License for the specific language governing permissions and

limitations under the License.

ECOMP and OpenECOMP are trademarks and service marks of AT&T Intellectual Property.

Copyright © 2017 AT&T Intellectual Property. All rights reserved.
Licensed under the Creative Commons License, Attribution 4.0 Intl. (the "License"); you may not use this
documentation except in compliance with the License.
All marks, trademarks, and product names used in this document are the property of their respective owners.

Date Revision Author Changes
2017-01-17 R1610.6 mjf “OpenECOMP”, cosmetic changes

2017-02-06 R1610.7 mjf copyright updated

Table	of	Contents	

0.	 Preface ... 4	
0.1	 Target Audience ... 4	
0.2	 Accessing Commands and Domain Name System ... 4	
0.3	 Related Documentation ... 4	

0.3.1	 Notice .. 4	
0.3.2	 Command-line Conventions .. 5	
0.3.3	 Text Conventions .. 5	

0.4	 Contact Information .. 6	
0.5	 Authors and Contributors ... 6	

0.5.1	 Table 0-3 Contributors .. 6	
0.6	 Terms and Acronyms ... 7	

1.	 Application Controller ... 8	
1.1	 Overview .. 8	
1.2	 Implementation ... 8	
1.3	 Features ... 8	
1.4	 Application Controller Interface .. 9	

1.4.1	 Overview ... 9	
1.4.2	 Dashboard ... 9	
1.4.3	 Karaf Web Console ... 12	

1.5	 Architecture .. 12	
1.5.1	 Dispatcher ... 12	
1.5.2	 State Machine ... 13	
1.5.3	 APPC Provider .. 13	
1.5.4	 The Service Logic Interpreter (SLI) Framework .. 14	
1.5.5	 A&AI .. 14	
1.5.6	 Southbound VNF Adapters ... 14	
1.5.7	 SSH (XML/CLI) Adapter .. 15	
1.5.8	 Transactions store ... 15	
1.5.9	 Table 1-1 Application Controller Interface Table ... 15	

2.	 Application Controller Releases ... 16	
2.1	 Load and Performance Testing .. 16	

3.	 Logging .. 16	
3.1	 Logging in the APPC Application ... 16	

4.	 Monitoring .. 17	

5.	 APPC Troubleshooting Tips and Production M&Ps ... 17	
5.1	 Troubleshooting Tips .. 17	
5.2	 Production M&Ps ... 17	
5.3	 Deployment Process .. 17	

6.	 APPC Use and Configuration .. 18	
6.1	 LCM Action Request and Response .. 18	

6.1.1	 LCM over REST (HTTP POST) .. 18	
6.1.2	 LCM over UEB (the OpenECOMP bus) .. 19	

6.2	 APPC Setup and Configuration ... 20	
6.2.1	 Universal Event Bus (UEB) ... 20	
6.2.2	 A&AI .. 20	
6.2.3	 Database connection .. 21	
6.2.4	 APPC Transactions Database connection .. 21	
6.2.5	 SLI (SVC Logic) .. 21	
6.2.6	 IAAS Adapter .. 22	

7.	 Application Controller VNF Onboarding ... 23	
7.1	 LCM Command Execution Overview ... 23	
7.2	 Creation of DGs ... 23	
7.3	 Data Setup ... 24	

7.3.1	 SVC_LOGIC .. 24	
7.3.2	 VNF_DG_MAPPING ... 26	
7.3.3	 DEVICE_AUTHENTICATION ... 27	
7.3.4	 VNF_LOCK_MANAGEMENT ... 27	
7.3.5	 VNF_STATE_MANAGEMENT .. 28	
7.3.6	 UPLOAD_CONFIG ... 28	
7.3.7	 DEVICE_INTERFACE_PROTOCOL .. 30	
7.3.8	 CONFIGFILES .. 30	
7.3.9	 GET_CONFIG_TEMPLATE .. 31	

8.	 VNF Configuration Management ... 32	

0. Preface

This preface contains:

• Target Audience

• Accessing Commands and Domain Name System

• Related Documentation

• Contact Information

• Authors and Contributors

• Terms and Acronyms

0.1 Target Audience

This document is intended for an advanced technical audience, which includes engineers and

technicians. This document will be revised when new versions of the software are released.

0.2 Accessing Commands and Domain Name System

Commands and Domain Name System (DNS) are provided in this document.

• If you are viewing the document online, click the example name.

• If you are viewing a printed copy of this document, look up the referenced example in the

appropriate Appendix.

0.3 Related Documentation

The following sections describe the conventions this document uses, including notices, text

conventions, and command-line conventions.

0.3.1 Notice

Note: Notes provide information of special interest or recommendations.

0.3.2 Command-line Conventions

 You may encounter one or more of the following elements in a command-line path.

Table 0-1 Command-line Conventions

Convention Description

Brackets [] This is used for optional items.

Braces { } This indicates choices separated by pipe (|) for sets from which only one

is selected. For example:

{even|odd}

Blue text This indicates a link (that is, if you are viewing this document online).

0.3.3 Text Conventions

You may encounter the following text conventions in this document.

 Table 0-2 Text Conventions

Convention Description

Monospace font
with blue shading

This font indicates sample codes, screenshots, or elements. For example:

contact": {
 “contactType”: “USER”,
 “source”: “app1”,
}

Italics • Emphasizes a point or denotes new terms at the place where they

are defined in the text.

• Indicates an external book title reference.

Numeric A number made up of digits 0 through 9.

Text Any combination of alphanumeric characters.

New items in RED

0.4 Contact Information

Refer to the Mailing Lists page on the OpenECOMP developer wiki for the Application Controller

working group email address.

0.5 Authors and Contributors

The following table consists of the persons who are authors and contributors to this document.

0.5.1 Table 0-3 Contributors

Contributors

0.6 Terms and Acronyms

 The following table defines terms and acronyms used in this document.

1. Application Controller
This section discusses the Application Controller (APPC) application implementation and

requirements.

• Overview

• Implementation

• Features

• Application Controller Interface

• Architecture

1.1 Overview
The Application Controller (APPC) is one of the components of the Open Enhanced Control,

Orchestration, Management, and Policy (OpenECOMP) platform, and is responsible for handling

the Life Cycle Management (LCM) of Virtual Network Functions (VNFs). This document provides

give detailed guidance on how to use APPC for LCM actions.

1.2 Implementation
The APPC infrastructure is implemented on virtual machines in an open stack cloud.

1.3 Features
The APPC HTTP API supports Life Cycle Management commands, allowing users to manage

virtual applications and their components.

1.4 Application Controller Interface
1.4.1 Overview

The Application Controller Dashboard interacts with the controller using REST APIs and performs
actions on VF/VMs, such as snapshot, lock, sync, and health-check.

The Application Controller Karaf Web Console interacts with the controller and provides a
graphical overview of the runtime.
You can use it to:

• Install and uninstall features
• Start, stop, install bundles
• Configure Karaf

1.4.2 Dashboard

To open the Application Controller dashboard, go to:

https://<controller-ip>:8443/apidoc/explorer/index.html

Navigate to the available LCM commands by clicking on appc-provider-lcm:

Click on the URI of the desired action to open a frame with information about the action and an

option to try it out. For example, to send the action, add the request body as the input parameter

value, and click Try it out!

The following figure shows an example body of a config-modify request:

If the request is accepted, you should see the following response:

1.4.3 Karaf Web Console

To access the console for an instance of Application Controller, enter the following address

in your web browser: https://<controller-ip>:8443/system/console

Log in with the username karaf and the password karaf. If you have changed the default

user or password, use the one you have configured.

1.5 Architecture
This section discusses the APPC internal components in detail.

APP-C High Level Architecture

1.5.1 Dispatcher

The APPC Dispatcher component processes requests received by the LCM API REST handler

from other OpenECOMP components. The Dispatcher checks the conditions are sufficient for

performing the request and selects the correct Direct Graph (DG) workflow for execution, or

rejects the request. When the DG execution is complete, the Dispatching function is responsible

for notifying the initiator of the operation with the request execution result (Success/Error) and

updates the VNF state in Active and Available Inventory (A&AI).

The detailed responsibilities of the Dispatcher are described as follows:

• Upon receiving the operation request, the Dispatcher performs the synchronous part of the
execution:

o Starts the operation's time-to-live countdown
o Queries A&AI to get the VNF type and its current operational state
o Operates an LCM State Machine, which uses VNF_type specific rules to allow or

reject the requested command execution
o Allocates and initiates an appropriate Directed Graph (DG) workflow to start the

asynchronous part of the execution
o Returns a response to the initiator: OK or reject (for example, the State Machine

blocks the operation, no DG or time-to-live, or bad parameters).
o If the operation is rejected, the Dispatcher generates an appropriate Audit log for the

Event and Error Logging Framework (EELF) and the Local Event Journal
• Upon workflow completion, the Dispatcher:

o Receives the execution results from the DG
o Publishes the execution result over UEB (Success or error)
o Updates VNF status in A&AI
o Generates an Audit log for EELF and Local Event Journal

1.5.2 State Machine

The VNF State machine enables the Dispatching function to determine the validity of the requested

operation (desired state) as a function of the current VNF state, acquired from the A&AI. The State

machine maintains its data (states and valid operations) in-memory. At the point of APP-C

initialization, the State Machine constructs a matrix based on the metadata of the current operation

and the valid desired state.

1.5.3 APPC Provider

The APPC Provider module exposes the endpoints for each action supported by APPC. This module

uses the YANG model to define the YANG Remote Processing Call (RPC) and data model, in other

words, the input and output parameters for each action. The Provider module is responsible for

validating the RPC input and for rejecting any malformed input. After successful validation, the

APPC Provider calls the Dispatcher to continue the request processing.

1.5.4 The Service Logic Interpreter (SLI) Framework

The SLI framework is responsible for executing Directed Graphs (DGs). The Dispatcher invokes the

SLI framework to execute a specific DG based on the input action. The SLI executes the DG

execution and the sub-DG returns a success or failure response to the caller along with context

variables used to exchange data with the calling body (for example, the Dispatcher). The caller can

use the SLI context to specify data required for DG execution. The same context is returned from the

DG once execution is complete.

1.5.5 A&AI

A&AI is used as a source for the VNF status and topology. It is also used to update the VNF

status at the end of the operation: for example, VNFC record(s) are added after configuration.

The A&AI status is not updated for read-only operations, such as Sync or Audit. In the case of the

Terminate operation, APP-C also removes the terminated VNF from A&AI by deleting its Virtual

Machines (VM)s.

Access to the A&AI is conducted using the SDN-C A&AI adapter via the Dispatching function and

operation-specific DGs.

1.5.6 Southbound VNF Adapters

APPC uses several adapters to connect to VNFs. The IAAS adapter is provided with the ODL

platforms. Other adapters have been added.

1.5.6.1 IAAS Adapter

IAAS Adapter is the southbound adapter for APP-C. It connects with the OpenDaylight

controller to perform various operations on VNFs such as restart, migrate, rebuild etc. The IAAS

Adapter is effectively used as a DG plugin in that the services exposed by the adapter are

called from DGs.

1.5.7 SSH (XML/CLI) Adapter

A custom adapter has been added which can connect to a VNF using an SSH session. It is
designed to support CLI and XML protocols, including Netconf. It is used to load configurations
and retrieve the running configuration.

1.5.8 Transactions store

For each operation request procedure that completes or terminates, APPC generates and

stores an accurate transaction record in its internal database, including:

• Timestamp
• Request ID
• Start time
• End time
• VF_ID
• VF_type
• Sub-component (optional) e.g. VFC_ID/VM UUID
• Operation: for example Start, Configure, etc.
• Result: Success/Error code and description, as published to the initiator

1.5.9 Table 1-1 Application Controller Interface Table

Source Flow Destination Service Port Purpose / Comments Frequency

APPC	 g	 A&AI	 REST 8443 · APPC retrieves and updates the
VNF data in AAI.

As needed	

APPC	 g	 SLI	
Java

(internal)
N/A · APPC sends the LCM API

request to SLI for DG execution
As needed

APPC	 g South-bound

Adapters	

Java

(internal)
N/A

AA APPC interacts with
southbound adapters for VNF
Lifecycle Management Actions

As needed

APPC	 g	 UEB	 JMS 3904
· APPC sends the Asynchronous

responses and Failure events
to UEB

As needed	

2. Application Controller Releases
The Application Controller is released for each OpenECOMP Release

2.1 Load and Performance Testing
Load and performance testing is done prior to E2E/Production deployment.

3. Logging

3.1 Logging in the APPC Application
APP-C uses Event and Error Logging Framework (EELF) for application logs.

To enable EELF logging:

1. Replace the default configuration file located at
/opt/opendaylight/current/etc/org.ops4j.pax.logging.cfg

with the configuration file that is checked into git

2. Stop and restart ODL controller for the configuration changes to take effect.

3. Verify logging changes at the following log paths:

• /opt/opendaylight/current/data/log/eelf/karaf.log

This log contains the regular karaf.log output reformatted to use the EELF MDC

properties and the pattern that is configured in the org.ops4j.pax.logging.cfg

file.

• /opt/opendaylight/current/data/log/APPC/<package-name>

This directory contains the audit, metric, error, and debug logs that are configured

in the org.ops4j.pax.logging.cfg file.

Note: /opt/opendaylight/current/data/log/APPC/controller contains the

logs generated from the package org.openecomp.* (all APPC logs)

• Error.log: alarms –ERROR level logs and above
• Info.log: INFO level logs only
• Debug.log: debugging – DEBUG level and above
• Audit – AUDIT level and above

4. Monitoring
The APPC does not currently support monitoring by the Nagios monitoring software.

5. APPC Troubleshooting Tips and Production M&Ps

5.1 Troubleshooting Tips
TBD

5.2 Production M&Ps
TBD

5.3 Deployment Process
The APPC Deployment Guide covers the deployment process.

6. APPC Use and Configuration

6.1 LCM Action Request and Response

The APPC exposes an HTTP API to support the Life Cycle Management (LCM) commands sent

from OpenECOMP components such as MSO, DCAE, and the Portal. These commands enable the

components to request APPC to perform actions such as to control, modify, start, or stop virtual

applications and/or their components.

A virtual application is composed of a maximum of four layers:

• Service

• Virtual Network Function (VNF)

• Virtual Network Function Component (VNFC)

• Virtual Machine (VM)

A Life Cycle Management command may affect any number of these layers.

APPC supports the following types of LCM requests:

6.1.1 LCM over REST (HTTP POST)

LCM command requests over REST are sent to the APPC using an HTTP POST request. The

APPC returns one or more responses for each LCM request.

An asynchronous command, containing an authorized and valid request, results in at least two

discrete response events:

o an ACCEPT response to indicate that the request is accepted and will be processed, and

o a final response for the command containing a final status.

An unauthorized or invalid request would result in a single ERROR response.

A synchronous command, for example Lock or Unlock, results in a single response, which is

either SUCCESS or ERROR. For this type of request, the first response is a synchronous HTTP

response. The second final status response is sent over the UEB.

The APPC API provides a POST HTTP API endpoint per command.

For the 1610 release, APPC supports the https protocol, whereas plain http requests are blocked.

Endpoint format:

<http-protocol>://<appc-ip>:<appc-api-port>/restconf/operations/appc-provider-

lcm:<command-name>

To see an example, go to:

https://10.147.113.151:8443/restconf/operations/appc-provider:config-modify

6.1.2 LCM over UEB (the OpenECOMP bus)

LCM command requests over UEB are sent as messages on the OpenECOMP bus

(UEB/DMaaP). APPC returns one or more responses for each LCM request.

An asynchronous command containing an authorized and valid request, results in at least two

discrete response events:

o an ACCEPT response to indicate that the request is accepted and will be processed, and

o a final response for the command containing a final status.

An unauthorized or invalid request would result in a single ERROR response.

A synchronous command, for example Lock or Unlock, results in a single response, which is

either SUCCESS or ERROR. For this type of request, both responses are returned via

UEB/DMaaP. The Read / Write topics for the UEB need to be configured as described in

Universal Event Bus (UEB).

For further information about the request and response format, see the APPC API Guide.

6.2 APPC Setup and Configuration
6.2.1 Universal Event Bus (UEB)

APPC sends asynchronous responses using the Universal Event Bus (UEB). It also receives

requests from UEB (see the APPC API Guide for further details). The UEB Adapter Bundle handles

all UEB operations (send / receive messages), and requires the following properties configured in
/opt/opendaylight/current/app/properties/appc.properties:

6.2.2 A&AI

APPC connects with A&AI using the AAI service (aai-service-karaf-extension-9.0.15.zip).

The current version of the AAI service library is 9.0.15.

To initialize AAI services, the following A&AI properties need to be configured in
/opt/opendaylight/current/app/properties/aaiclient.propertis:

Asynchronous responses
ueb.topic.write=<WRITE_TOPIC> // e.g. async_demo
e.g. 10.147.101.46:3904
ueb.poolMembers= <HOST_IP_1>:<PORT_NUMBER>,<HOST_IP_2>:<PORT_NUMBER>

DG events (asynchronous) in case of failures
DCAE.event.topic.write=<WRITE_TOPIC> // e.g. event_demo

e.g. 10.147.101.46:3904
DCAE.event.pool.members=<HOST_IP_1>:<PORT_NUMBER>,<HOST_IP_2>:<PORT_NUMBER>

1610 LCM API (rpc) – synchronous
The following properties are required for sending LCM request over UEB.
appc.LCM.provider.url=https://localhost:8443/restconf/operations/appc-provider-lcm
e.g. 10.147.101.46:3904
appc.LCM.poolMembers=<HOST_IP_1>:<PORT_NUMBER>,<HOST_IP_2>:<PORT_NUMBER>

appc.LCM.topic.read=<READ_TOPIC> // e.g. test2021
appc.LCM.topic.write=<WRITE_TOPIC> // e.g. APPC-TEST-LCM
appc.LCM.client.name=<CLIENT_NAME> // e.g name1
appc.LCM.client.name.id=<CLIENT_ID> // e.g 0
appc.LCM.provider.user=<LCM PROVIDER Username> // e.g. admin
appc.LCM.provider.pass=<LCM PROVIDER Username> // e.g. admin

org.openecomp.sdnc.sli.aai.ssl.trust= <SSL KEY Store location> e.g.
//opt/opendaylight/current/app/tls-client/aai-client-truststore.jks
org.openecomp.sdnc.sli.aai.ssl.trust.psswd=<SSL KEY Store Password>
org.openecomp.sdnc.sli.aai.ssl.key= <SSL KEY location > e.g
//opt/opendaylight/current/app/tls-client/aai-client-cert.p12
org.openecomp.sdnc.sli.aai.ssl.key.psswd=<SSL KEY Password>
org.openecomp.sdnc.sli.aai.uri=https://<IP_ADDRESS>:<PORT_NUMBER>

6.2.3 Database connection

APPC uses dblib service (dblib-karaf-extension-9.0.1.zip) for all database operations. The

current version of dblib service is 9.0.1. This library uses the file,

/opt/opendaylight/current/app/properties/dblib.properties, which contains the requisite

database properties, such as host, user and password:

6.2.4 APPC Transactions Database connection

6.2.5 SLI (SVC Logic)

APPC use the SLI service (sli-karaf-extension-9.0.5.zip) to execute the DG. The current

version of SLI service is 9.0.5. To initialize SLI services, the following properties need to be

configured in /opt/opendaylight/current/app/properties/svclogic.properties. The

database operations performed from the DG also use this database configuration.

org.openecomp.sdnc.sli.dbtype=jdbc
org.openecomp.sdnc.sli.jdbc.url=jdbc:mysql://<HOST_IP>:3306/<DB_NAME>
org.openecomp.sdnc.sli.jdbc.database=<DB_NAME>
org.openecomp.sdnc.sli.jdbc.user=<USER>
org.openecomp.sdnc.sli.jdbc.password=<PASSWORD>
org.openecomp.sdnc.sli.jdbc.limit.max=<CONNECTION POOL MAXIMUM SIZE> // e.g. 10
org.openecomp.sdnc.sli.jdbc.limit.min=<CONNECTION POOL MINIMUM SIZE> // e.g. 4
org.openecomp.sdnc.sli.jdbc.limit.init=<CONNECTION POOL INITIAL SIZE> // e.g. 5
org.openecomp.sdnc.sli.jdbc.connection.name=<CONNECTION_NAME>
org.openecomp.sdnc.sli.jdbc.hosts=<HOST>

org.openecomp.appc.db.url.appcctl=jdbc:mysql://<HOST_IP>:3306/appcctl
org.openecomp.appc.db.user.appcctl=appcctl
org.openecomp.appc.db.pass.appcctl=appcctl

6.2.6 IAAS Adapter

IAAS Adapter is the southbound adapter of APPC. To initialize the IAAS Adapter service, the

following properties need to be configured

in /opt/opendaylight/current/app/properties/appc.properties:

org.openecomp.sdnc.sli.dbtype = jdbc
org.openecomp.sdnc.sli.jdbc.url =jdbc:mysql://<HOST_IP>:3306/<DB_NAME>
// jdbc:mysql://localhost:3306/sdnctl
org.openecomp.sdnc.sli.jdbc.database =<DB_NAME> e.g. sdnctl
org.openecomp.sdnc.sli.jdbc.user = <USER> e.g. sdnctl
org.openecomp.sdnc.sli.jdbc.password = <PASSWORD>

Provider (OpenStack) configuration
provider1.name=<Provider NAME>
provider1.identity=http://10.147.249.40:5000/v2.0
provider1.tenant1.name=<TENANT>
provider1.tenant1.userid=<USER_NAME>
provider1.tenant1.password=<PASSWORD>

7. Application Controller VNF Onboarding

7.1 LCM Command Execution Overview
The Application Controller assumes that the A&AI instance it is configured with contains all the
information it needs about VNF/VNFC/VMs, otherwise any request by the user to perform an action
on a VNF will fail. The Application Controller uses a variety of SQL tables in order to perform
actions on a VNF, all of which are described in Creation of DGs
DGs are created using the Direct Graph Builder - Node Red graphical utility for DGs creation. DGs

are then stored as XML files and loaded to APPC MySQL database. The DGs invoke the execution

of Java code from different nodes.

DGs are resolved according to LCM Action, API version, VNF Type, and VNF Version.

The SLI framework is responsible for executing the DGs.

Data Setup.

Initially, Application Controller should have a set of DGs designed for the specific VNF type. These
DGs are stored in the SVC_LOGIC table.

After a user sends an action request to the controller, the Application Controller uses the
VNF_DG_MAPPING table to map the requested action to a specific DG. If the mapping was
successful, the input body is validated and the user receives a synchronous response containing
an Accept or a Reject message to indicate whether the request was rejected or whether it was
accepted and the controller initiated the DG flow.

During the execution of a DG, the controller may use one or more SQL tables to fetch or store data.
For example, in order to perform a ConfigModify action, the controller needs to fetch a username
and password to connect to the VNF and change its configuration.

ALL tables used during DG execution are described below.

7.2 Creation of DGs
DGs are created using the Direct Graph Builder - Node Red graphical utility for DGs creation. DGs

are then stored as XML files and loaded to APPC MySQL database. The DGs invoke the execution

of Java code from different nodes.

DGs are resolved according to LCM Action, API version, VNF Type, and VNF Version.

The SLI framework is responsible for executing the DGs.

7.3 Data Setup
APP-C uses MySQL database as a persistent store. This section describes the tables in general

and the tables that require data to be set up before sending a request.

7.3.1 SVC_LOGIC

This table stores all NodeRed DGs invoked by actions executed by APPC. The SLI framework

uses this table for running the DG. If the DG does not exist in this table, the SLI framework returns

a 'DG not found' error.

	

7.3.1.1 Table 7-1: Parameters
module rpc version mode active graph

APPC Generic_Audit 2.0.0 sync N <BLOB>

module, rpc, version

The module, rpc, and version parameters uniquely identify a Directed Graph (DG). The SLI

framework uses these three parameters to invoke a DG or sub-DG. By convention, for the main

DG, rpc is a combination of 'VNF type' (the generic type applied to all VNFs) followed by '_' and

'action'. This is the default convention; resolution of the DG for specific actions is handled

individually in the relevant forthcoming sections.

mode

The DG execution node. This value is set to ‘sync’ for all APPC DGs.

active

This flag is the value of either 'Y' or 'N'. This flag is only used if specific version of DG is not

mentioned while calling DG. If version of DG is not mentioned SLI framework will look for DG with

active Flag set to 'Y' and execute it if found.

graph

This is actual graph invoked by SLI framework. The data type is SQL BLOB.

7.3.1.2 Loading Data into SVC_LOGIC
Follow these steps to load data in the table:

1. Copy the following libraries to a folder such as C:\Domain2\lib (these libraries can be
located in nexus repository):

2. Place all XML files that need to be loaded in any folder, for example XML\.
3. Run the following command to load DGs:

java -classpath lib* org.openecomp.appc.dg.DGXMLLoadNActivate XML\ activate.txt
dblib.properties
Modify the three parameters as required:

• XML\: The folder where all DG XMLs are placed in step 2
• activate.txt: The file that lists the DGs that need to be activated. For example,

in the SVC_LOGIC table, mark ACTIVE = ‘Y’. This is optional.
The format is: module:rpc:version:mode.

• dblib.properties: The properties file with database details. Ensure that you
update the database IP in this file to your APPC instance (where you need to load
DGs).

Parameters in dblib.properties file:

antlr4-4.5.1.jar
antlr4-runtime-4.5.1.jar
appc-dg-provider-10.0.1.jar
appc-dg-swm-10.0.1.jar
commons-io-2.5.jar
commons-lang-2.6.jar
commons-lang3-3.1.jar
dblib.properties
dblib-provider-9.0.1.jar
guava-18.0.jar
java-concurrent-hash-trie-map-0.2.23.jar
jcl-over-slf4j-1.6.1.jar
jsr305-3.0.0.jar
load_dg.sh
mysql-connector-java-5.1.39.jar
slf4j-api-1.6.1.jar
slf4j-simple-1.7.5.jar
sli-common-9.0.5.jar
sli-provider-9.0.5.jar

4. The expected output for successful load

Note: Any validation errors will be displayed in the console.

7.3.2 VNF_DG_MAPPING

This table stores the VNF and its corresponding DG. This is used by the DG resolver logic of the

Dispatcher to map the DG to the requested action. Only the mapping is stored; the actual DG is

stored in the SVC_LOGIC table.

The DG resolver logic uses a combination of action, api_version and vnf_type to retrieve the

DG details: dg_name (rpc column of SVC_LOGIC table), dg_version and dg_module.

The module, rpc and version uniquely identify the DG.

Blank, null or ‘*’ values in api_version , vnf_type and vnf_version are matched with any values

by the DG resolver. For example, a generic DG which can be invoked on any type of VNF

'vnf_type' can be blank / null or *. The DG resolver logic first tries to match a specific DG, and if this

is not found, then look for a generic match using ‘*’. For example, an entry for the Test action and

vnf_type VSBG is specific, so it is only used for VNFs of type VSBG, whereas for the Sync action

the same DG is used for any type of VNF and any version.

org.openecomp.sdnc.sli.dbtype = jdbc
org.openecomp.sdnc.sli.jdbc.url = jdbc:mysql://<HOST-IP>:3306/sdnctl
org.openecomp.sdnc.sli.jdbc.database = sdnctl
org.openecomp.sdnc.sli.jdbc.user = sdnctl
org.openecomp.sdnc.sli.jdbc.password = gamma
org.openecomp.sdnc.sli.jdbc.limit.max=10
org.openecomp.sdnc.sli.jdbc.limit.min=4
org.openecomp.sdnc.sli.jdbc.limit.init=5
org.openecomp.sdnc.sli.jdbc.connection.name=sdnctl
org.openecomp.sdnc.sli.jdbc.hosts=<HOST-IP>

******************** Loading DG into Database *****************************
Loading DG XML file :C:\Domain2\XML\APPC_2.0.0_method_Generic_Audit.xml
[main] INFO org.openecomp.sdnc.sli.SvcLogicParser - Saving SvcLogicGraph to database
(module:APPC,rpc:Generic_Audit,version:2.0.0,mode:sync)
******************** Activating DG into Database *****************************
Activating DG :APPC:Generic_Audit:2.0.0:sync
Found Graph :APPC:Generic_Audit:2.0.0:sync Activating ...

7.3.2.1 Table 7-2: Parameters
action api_version vnf_type vnf_version dg_name dg_version dg_module

Test 2 VSBG VSBG_Test 2.0.0.1 APPC

Sync Generic_Sync 2.0.0 APPC

7.3.3 DEVICE_AUTHENTICATION

This table stores device authentication details. It is used by actions such as Audit and Sync which

connect with VNFs. This table stores a record that corresponds to each VNF type, so vnf_type

is unique.

Username, password and port_number are fields corresponding to vnf_type.

7.3.3.1 Table 7-3: Parameters

DEVICE_AUTHENTICATION_ID VNF_TYPE USER_NAME PASSWORD PORT_NUMBER

41 vDBE-V root <password> 22

7.3.4 VNF_LOCK_MANAGEMENT

This table is used to persist data for vnf locking. APP-C lock vnf id when action start executing on

that vnf id. This table stores vnf_id i.e. resource_id along with owner , expiration_time or timeout.

before execution of request dispatcher check if VNF_ID is already locked by another action in

execution. If not locked dispatcher will lock vnf else return VNF locked error to caller.

7.3.4.1 Table 7-4: Parameters

RESOURCE_ID

OWNER_ID

UPDATED TIMEOUT VER

AUDIT_1652 vDBE-V

1474457140000 0 22

This table do not require any initial setup.

7.3.5 VNF_STATE_MANAGEMENT

This table is used to store the operational state of VNF_ID, whether it is stable or unstable. It stores

state, owner and updated time (in milliseconds). This table does not require any initial setup.

7.3.5.1 Table 7-5: Parameters

VNF_IF STATE OWNER_ID UPDATED TIMEOUT VER

ASHISH_VSBG_

VNFS_1787

STABLE ORIG_1787@REQ_1787

@SUBREQ_1787

1474457140000 0 22

7.3.6 UPLOAD_CONFIG

This table is used by configuration management actions such as Audit, Sync, ConfigModify,

Terminate, and similar. It stores device configuration: one row or record corresponds to one

VNFC, so therefore a VNF that has multiple VNFCs has multiple rows in the table.

The UPLOAD_CONFIG table stores configuration as the following types:

• Current

• Running

• Historic

The config_indicator column denotes the type of configuration, where a null value denotes

Historic configuration. For a single VNFC there should only be one Current and one Running

configuration , but there can be multiple Historic configurations. This table does not require any

initial setup.

7.3.6.1 Table 7-6: Parameters

Parameter Name Value for ConfigModify Value for Sync

UPLOAD_CONFIG_ID 63 67

REQUEST_ID 3 REQ_1690

ORIGINATOR_ID 12345 ORIG_1690

SERVICE_DESCRIPTION abcde abcde

ACTION ConfigModify Sync

UPLOAD_DATE 2016-08-01 14:30:40 2016-09-22 12:30:40

VNF_ID AUDIT_1767 AUDIT_1690

VNF_NAME GET_RUN_CONFIG_VNF GET_RUN_CONFIG_VNF

VM_NAME GET_RUN_CONFIG_VNF GET_RUN_CONFIG_VNF

VNF_TYPE vDBE-V vDBE-V

VNFC_TYPE vDBE-V2 vDBE-V1

HOST_IP_ADDRESS 135.25.69.37

CONFIG_INDICATOR Current Running

PENDING_DELETE

CONTENT Dummy_current <Configuration>

7.3.7 DEVICE_INTERFACE_PROTOCOL

This table is used by the 'getRunningConfig' DG, which is a sub-DG, called by Audit and Sync DG.

It stores the VNF type and corresponding sub-DG, which are used to get the running configuration

of a device. The module and DG_RPC are used to identify the DG from the SVC_LOGIC table. The

protocol is used to store the protocol defined for retrieving configuration. If a mapping between

the VNF type and the DG does not exist in this table, then actions such as Audit and Sync fail with

the error message 'Device Interfacing DG not available'.

7.3.7.1 Table 7-7: Parameters
DEVICE_INTERFACE_

PROTOCOL_ID
VNF_TYPE PROTOCOL MODULE DG_RPC

4 vDBE-V NETCONF-XML APPC getDeviceRunningConfig

7.3.8 CONFIGFILES

This table is used by the several configuration DGs, using a legacy configuration API, to store

artifacts from SDC, configuration data from requests, and configurations to be downloaded to

VNFs.

7.3.8.1 Table 7-8: Parameters

Parameter Name Value

CONFIG_FILE_ID 24

EXTERNAL_VERSION

DATA_SOURCE Configurator

CREATION_DATE 6/9/2016 11:16:57 AM

SERVICE_INSTANCE_ID ibcx0001vm001

VNF_TYPE ISBC

VNFC_TYPE vISBC - mmc

Parameter Name Value

FILE_CATEGORY device_configuration

FILE_NAME orch_config.json

FILE_CONTENT (contains configuration)

7.3.9 GET_CONFIG_TEMPLATE

This table is used by the 'getDeviceRunningConfig' DG which is used as a sub-DG for the Audit

and Sync actions. It stores template data corresponding to the VNF type. Template data is only

used when the protocol in DEVICE_INTERFACING_PROTOCOL table is set to 'CLI'. Other

protocols do not use this table. If Data does not exist in this table and protocol is set to 'CLI' then

DG results in 'Error getting Template Data'.

7.3.9.1 Table 7-9: Parameters

Parameter Name Value

GET_CONFIG_TEMPLATE_ID 1

VNF_TYPE Generic

DEVICE_INTERFACE_PROTOCOL_ID 3

XML_PROCESSING

XML_PROTOCOL

TEMPLATE Login_Prompt: Matches "Login as:"...

8. VNF Configuration Management
APPC supports LCM actions for configuration management, such as Sync, Audit, and

ConfigModify. APPC persists device configuration to the APPC MySQL database. All configuration

management actions manage this data (read / write / update) during their operations.

