
1.  
2.  
3.  
4.  

1.  

Best Practices

Instructions

Review each guideline
Add your comments and suggestions to the "Comments" column
The disposition will be determined based on of your input and discussion with the team.
Once you have input your comments, close the JIRA task to signal the team that you have provided your input.

Scope

The guidelines listed here:

Are intended to address the build process.
Don't address the fundamentals or principles of container images.

General Comments:

add guideline addressing base images, e.g. example in project proposal re: alpine base image (FS)
add guideline addressing multi-platform images (FS)
add guideline addressing image names, e.g. "db" discouraged, "onap-component-db" preferred, e.g. "music-db" (FS)
add guideline addressing proper use of onap image repo (FS)

General Guidelines
Comments Disposition

Understand build context

When executing " ", the current working directory is the . By default, thedocker build build context
Dockerfile is assumed to be in the current working directory.

Irrespective of where the  is located, all recursive contents of files and directories in theDockerfile
current directory are sent to the Docker daemon as the build context.

Inadvertently including files that are not necessary for building an image results in a larger build context and
larger image size.

This can increase the time to build the image, time to pull and push it, and the container runtime size.

"this can
increase'..."

I suggest the
very first
guideline should
be a general
statement about
image size, as
many of these
individual items
address that
general concern

2. Exclude with .dockerignore

Exclude files not relevant to the build with a  file..dockerignore

This file supports exclusion patterns similar to  files..gitignore

3.Use multi-stage builds

Multi-stage builds reduces the size of an image, without worrying about the number of intermediate layers
and files.

An image is built during the final stage of the build process. The number of image layers can be minimized
by .leveraging build cache

For a build that contains several layers, order them from the less frequently changed (re-use build cache) to
the more frequently changed:

Install tools you need to build your application
Install or update library dependencies
Generate your application

"the number of
layers..."
Perhaps say
"see below
'Re-use the
build cache'

https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#leverage-build-cache


4. Don’t install unnecessary packages

Avoid installing extra or unnecessary packages.

This will reduce complexity, dependencies, file sizes, and build times,  Don't include a text editor in a
database image.

5. Decouple applications

Apply the principle of "separation of concerns."

Each container should have only one concern. Decoupling applications into multiple containers makes it
easier to reuse containers.

6. Minimize the number of layers

The instructions , ,  create layers and directly increase the size of the build.RUN COPY ADD

Use multi-stage builds, to only copy the artifacts you need into the final image.

Tools and debug information can be added to intermediate build stages without increasing the size of the
final image.

"tools and
debug info..." I
don't
understand this.
Perhaps an
example would
be helpful

7. Sort multi-line arguments

To minimize duplication of packages and make the list of packages much easier to update, sort multi-line
arguments alphanumerically.

8. Re-use the build cache

As each instruction in the Dockerfile is examined, the builder looks for an existing image in its cache that
can be reused, rather than creating a duplicate image.

For the  and  instructions, the contents of the file(s) in the image are examined and aADD COPY
checksum is calculated for each file. The last-modified and last-accessed times of the file(s) are not
considered in these checksums. During the cache lookup, the checksum is compared against the
checksum in the existing images. If anything has changed in the file(s), such as the contents and
metadata, then the cache is invalidated.
Aside from the  and  commands, cache checking does not look at the files in the container toADD COPY
determine a cache match.
For example, when processing a  command the files updated in theRUN apt-get -y update
container are not examined to determine if a cache hit exists. In that case just the command string
itself is used to find a match.

Once the cache is invalidated, all subsequent  commands generate new images and theDockerfile
cache is not used.

Build File Instructions
Comments Disposition

FROM

Use current official repositories for base images. ONAP images must be vendor agnostic; ensure that the
base images are cpu architecture-agnostic.

are there base
images that are
multi-pltfrom, or
is there a need
to create
multiple images
for multiple
targets? eg.
there is 'alpine'
and
'arm64v8/alpine'

LABEL

Labels are unique key-value pairs used to add metadata to container images and containers. They help
organize images by project, add licensing information, or to support build and CI pipeline.

An image can have more that one label. For each label, begin a new line with "LABEL" and add one or
more key-value pairs.

https://docs.docker.com/develop/develop-images/multistage-build/


1.  
2.  
3.  

a.  
4.  
5.  

a.  
6.  

a.  
b.  

RUN

To make the build file (e.g. Dockerfile) more readable, understandable and maintainable:

RUN apt-get

Split a long or complex statement into multiple lines
Separate each line by a backslash (\)
Avoid RUN apt-get upgrade and RUN apt-get dist-upgrade.

Some packages from the parent image may not upgrade in a container.
If you must update a package (e.g. bar) use "apt-get install -y bar"
Install the latest package versions with no further coding or manual intervention by combining "RUN
apt-get update" and "apt-get install -y" in a single RUN statement:

RUN apt-get update && apt-get install -y
Use "version pinning." It will:

Force the build to use a particular package version regardless of what's in the cache
Reduce failures due to unexpected changes in required packages

Well-formatted example:

RUN apt-get update && apt-get install -y \
    aufs-tools \
    automake \
    build-essential \
    curl \
    dpkg-sig \
    libcap-dev \
    libsqlite3-dev \
    mercurial \
    reprepro \
    ruby1.9.1 \
    ruby1.9.1-dev \
    s3cmd=1.1.* \
 && rm -rf /var/lib/apt/lists/*

ERRORS IN STAGES OF A PIPE

7. Use "set -o pipefail &&"  to ensure that the RUN command only succeeds if all stages of a pipe succeed.

RUN ["/bin/bash", "-c", "set -o pipefail && wget -O - https://myapp.net | wc -l
>= b"]

CMD

This instruction provides defaults to run the application packaged in a container image. It should always be
used in the form:

CMD [“executable”, “arg1”, “arg2”…]

Typically, CMD should run an interactive shell. That way users get a usable shell when they execute
"docker run -it ..." For example:

CMD ["sh", "-c", "echo $ENV" ]

CMD ["python"]

CMD [“php”, “-a”]

Note: If the user provides arguments to "docker run", they override the defaults specified in "CMD."

EXPOSE

Use well-known ports for your application. For example, an image containing Apache web server should
use . An image containing MongoDB should use  and so on and so forth.EXPOSE 80 EXPOSE 27017



ENV

Use ENV to avoid hard-coding values for variables and parameters in the your build file. ENV can
parameterize container variables. For example, the version of the software in the container (VERSION), the
PATH environment variable and other execution environment variables (MAJOR).

ENV MAJOR 1.3
ENV VERSION 1.3.4
RUN curl -SL http://example.com/postgres-$VERSION.tar.xz | tar -xJC
/usr/src/postgress && …
ENV PATH /usr/local/postgres-$MAJOR/bin:$PATH

Each  command creates a new intermediate layer. Even if you unset the environment variable in aENV
future layer, it still persists in this layer. Use a  command with shell commands, to set, use, and unsetRUN
the variable all in a single layer. Separate your commands with &&.

Example

RUN export ADMIN_USER="seneca" \
    && echo $ADMIN_USER > ./seneca \
    && unset ADMIN_USER

ADD or COPY
 and  are functionally similar but COPYADD COPY  is preferred becaus  only supportse it

copying of local files into the container and it’s more transparent than .ADD

ADD is recommended for local tar file auto-extraction into the image (e.g. .).ADD rootfs.tar.xz /

If you have to copy several files from your context,  them individually, instead of all at once. That wayCOPY
each step is only re-execute if the specifically required files change.

To reduce the number of layers and the image size, don't use  to download packages from URLs. Use ADD
 or elete the files you no longer need after they’ve been extracted.curl wget and d

Example:

RUN mkdir -p /usr/src/ether \
    && curl -SL http://vacuum.com/huge.tar.xz \
    | tar -xJC /usr/src/ether \
    && make -C /usr/src/ether all



ENTRYPOINT

Use  to set the image’s main command. That allows the image to be executed as though itENTRYPOINT
was that command. Use  to set the default arguments.CMD

Example:

By setting

ENTRYPOINT ["my_command"]

CMD["–version"]

The image can be run as

$ docker run my_command

or

$ docker rum my_command --verbose -n 10

ENTRYPOINT can also be used in combination with a script when more than one execution step is required.

Copy the script into the container and run it via  on container start.ENTRYPOINT

Example:

COPY ./docker-entrypoint.sh /
ENTRYPOINT ["/docker-entrypoint.sh"]
CMD ["redis"]
 

User can then execute:

$ docker run redis

VOLUME

The  instruction should be used for any mutable or user-serviceable parts of the image.VOLUME

VOLUME exposes database storage areas, configuration storage, or files/folders created by the container.

USER

Do not run containers as root. Use USER to change to an non-root user.

Create the user and group as in this example:

RUN groupadd -r postgres && useradd --no-log-init -r -g postgres postgres .

Avoid installing or using . If you need to, use "gosu" instead.sudo

To minimize the number of layers, avoid switching  back and forth frequently.USER

WORKDIR

Always use absolute paths for your .WORKDIR

Use  instead of cd commands like " ." They could be hard to read,WORKDIR RUN cd … && do-something
troubleshoot, and maintain.



ONBUILD

ONBUILD executes on children images derived FROM the current image. ONBUILD can be seen as an
instruction the parent  gives to the child .Dockerfile Dockerfile

Images built from  should get a separate tag, for example:  or ONBUILD java:8-onbuild java:9-onbui
.ld


	Best Practices

