From 43dac0bc4302fed79eaeb661723ca584a9c0496a Mon Sep 17 00:00:00 2001 From: HuabingZhao Date: Mon, 4 Sep 2017 15:00:54 +0800 Subject: restructure the source directory Issue-ID: OOM-61 Change-Id: Ib6f633d517ad197bfdbca59b374cdad2f1ed897e Signed-off-by: HuabingZhao --- kube2msb/src/vendor/gopkg.in/inf.v0/LICENSE | 28 -- kube2msb/src/vendor/gopkg.in/inf.v0/dec.go | 615 ------------------------- kube2msb/src/vendor/gopkg.in/inf.v0/rounder.go | 145 ------ 3 files changed, 788 deletions(-) delete mode 100644 kube2msb/src/vendor/gopkg.in/inf.v0/LICENSE delete mode 100644 kube2msb/src/vendor/gopkg.in/inf.v0/dec.go delete mode 100644 kube2msb/src/vendor/gopkg.in/inf.v0/rounder.go (limited to 'kube2msb/src/vendor/gopkg.in/inf.v0') diff --git a/kube2msb/src/vendor/gopkg.in/inf.v0/LICENSE b/kube2msb/src/vendor/gopkg.in/inf.v0/LICENSE deleted file mode 100644 index 87a5ced..0000000 --- a/kube2msb/src/vendor/gopkg.in/inf.v0/LICENSE +++ /dev/null @@ -1,28 +0,0 @@ -Copyright (c) 2012 Péter Surányi. Portions Copyright (c) 2009 The Go -Authors. All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are -met: - - * Redistributions of source code must retain the above copyright -notice, this list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above -copyright notice, this list of conditions and the following disclaimer -in the documentation and/or other materials provided with the -distribution. - * Neither the name of Google Inc. nor the names of its -contributors may be used to endorse or promote products derived from -this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/kube2msb/src/vendor/gopkg.in/inf.v0/dec.go b/kube2msb/src/vendor/gopkg.in/inf.v0/dec.go deleted file mode 100644 index d17ad94..0000000 --- a/kube2msb/src/vendor/gopkg.in/inf.v0/dec.go +++ /dev/null @@ -1,615 +0,0 @@ -// Package inf (type inf.Dec) implements "infinite-precision" decimal -// arithmetic. -// "Infinite precision" describes two characteristics: practically unlimited -// precision for decimal number representation and no support for calculating -// with any specific fixed precision. -// (Although there is no practical limit on precision, inf.Dec can only -// represent finite decimals.) -// -// This package is currently in experimental stage and the API may change. -// -// This package does NOT support: -// - rounding to specific precisions (as opposed to specific decimal positions) -// - the notion of context (each rounding must be explicit) -// - NaN and Inf values, and distinguishing between positive and negative zero -// - conversions to and from float32/64 types -// -// Features considered for possible addition: -// + formatting options -// + Exp method -// + combined operations such as AddRound/MulAdd etc -// + exchanging data in decimal32/64/128 formats -// -package inf - -// TODO: -// - avoid excessive deep copying (quo and rounders) - -import ( - "fmt" - "io" - "math/big" - "strings" -) - -// A Dec represents a signed arbitrary-precision decimal. -// It is a combination of a sign, an arbitrary-precision integer coefficient -// value, and a signed fixed-precision exponent value. -// The sign and the coefficient value are handled together as a signed value -// and referred to as the unscaled value. -// (Positive and negative zero values are not distinguished.) -// Since the exponent is most commonly non-positive, it is handled in negated -// form and referred to as scale. -// -// The mathematical value of a Dec equals: -// -// unscaled * 10**(-scale) -// -// Note that different Dec representations may have equal mathematical values. -// -// unscaled scale String() -// ------------------------- -// 0 0 "0" -// 0 2 "0.00" -// 0 -2 "0" -// 1 0 "1" -// 100 2 "1.00" -// 10 0 "10" -// 1 -1 "10" -// -// The zero value for a Dec represents the value 0 with scale 0. -// -// Operations are typically performed through the *Dec type. -// The semantics of the assignment operation "=" for "bare" Dec values is -// undefined and should not be relied on. -// -// Methods are typically of the form: -// -// func (z *Dec) Op(x, y *Dec) *Dec -// -// and implement operations z = x Op y with the result as receiver; if it -// is one of the operands it may be overwritten (and its memory reused). -// To enable chaining of operations, the result is also returned. Methods -// returning a result other than *Dec take one of the operands as the receiver. -// -// A "bare" Quo method (quotient / division operation) is not provided, as the -// result is not always a finite decimal and thus in general cannot be -// represented as a Dec. -// Instead, in the common case when rounding is (potentially) necessary, -// QuoRound should be used with a Scale and a Rounder. -// QuoExact or QuoRound with RoundExact can be used in the special cases when it -// is known that the result is always a finite decimal. -// -type Dec struct { - unscaled big.Int - scale Scale -} - -// Scale represents the type used for the scale of a Dec. -type Scale int32 - -const scaleSize = 4 // bytes in a Scale value - -// Scaler represents a method for obtaining the scale to use for the result of -// an operation on x and y. -type scaler interface { - Scale(x *Dec, y *Dec) Scale -} - -var bigInt = [...]*big.Int{ - big.NewInt(0), big.NewInt(1), big.NewInt(2), big.NewInt(3), big.NewInt(4), - big.NewInt(5), big.NewInt(6), big.NewInt(7), big.NewInt(8), big.NewInt(9), - big.NewInt(10), -} - -var exp10cache [64]big.Int = func() [64]big.Int { - e10, e10i := [64]big.Int{}, bigInt[1] - for i, _ := range e10 { - e10[i].Set(e10i) - e10i = new(big.Int).Mul(e10i, bigInt[10]) - } - return e10 -}() - -// NewDec allocates and returns a new Dec set to the given int64 unscaled value -// and scale. -func NewDec(unscaled int64, scale Scale) *Dec { - return new(Dec).SetUnscaled(unscaled).SetScale(scale) -} - -// NewDecBig allocates and returns a new Dec set to the given *big.Int unscaled -// value and scale. -func NewDecBig(unscaled *big.Int, scale Scale) *Dec { - return new(Dec).SetUnscaledBig(unscaled).SetScale(scale) -} - -// Scale returns the scale of x. -func (x *Dec) Scale() Scale { - return x.scale -} - -// Unscaled returns the unscaled value of x for u and true for ok when the -// unscaled value can be represented as int64; otherwise it returns an undefined -// int64 value for u and false for ok. Use x.UnscaledBig().Int64() to avoid -// checking the validity of the value when the check is known to be redundant. -func (x *Dec) Unscaled() (u int64, ok bool) { - u = x.unscaled.Int64() - var i big.Int - ok = i.SetInt64(u).Cmp(&x.unscaled) == 0 - return -} - -// UnscaledBig returns the unscaled value of x as *big.Int. -func (x *Dec) UnscaledBig() *big.Int { - return &x.unscaled -} - -// SetScale sets the scale of z, with the unscaled value unchanged, and returns -// z. -// The mathematical value of the Dec changes as if it was multiplied by -// 10**(oldscale-scale). -func (z *Dec) SetScale(scale Scale) *Dec { - z.scale = scale - return z -} - -// SetUnscaled sets the unscaled value of z, with the scale unchanged, and -// returns z. -func (z *Dec) SetUnscaled(unscaled int64) *Dec { - z.unscaled.SetInt64(unscaled) - return z -} - -// SetUnscaledBig sets the unscaled value of z, with the scale unchanged, and -// returns z. -func (z *Dec) SetUnscaledBig(unscaled *big.Int) *Dec { - z.unscaled.Set(unscaled) - return z -} - -// Set sets z to the value of x and returns z. -// It does nothing if z == x. -func (z *Dec) Set(x *Dec) *Dec { - if z != x { - z.SetUnscaledBig(x.UnscaledBig()) - z.SetScale(x.Scale()) - } - return z -} - -// Sign returns: -// -// -1 if x < 0 -// 0 if x == 0 -// +1 if x > 0 -// -func (x *Dec) Sign() int { - return x.UnscaledBig().Sign() -} - -// Neg sets z to -x and returns z. -func (z *Dec) Neg(x *Dec) *Dec { - z.SetScale(x.Scale()) - z.UnscaledBig().Neg(x.UnscaledBig()) - return z -} - -// Cmp compares x and y and returns: -// -// -1 if x < y -// 0 if x == y -// +1 if x > y -// -func (x *Dec) Cmp(y *Dec) int { - xx, yy := upscale(x, y) - return xx.UnscaledBig().Cmp(yy.UnscaledBig()) -} - -// Abs sets z to |x| (the absolute value of x) and returns z. -func (z *Dec) Abs(x *Dec) *Dec { - z.SetScale(x.Scale()) - z.UnscaledBig().Abs(x.UnscaledBig()) - return z -} - -// Add sets z to the sum x+y and returns z. -// The scale of z is the greater of the scales of x and y. -func (z *Dec) Add(x, y *Dec) *Dec { - xx, yy := upscale(x, y) - z.SetScale(xx.Scale()) - z.UnscaledBig().Add(xx.UnscaledBig(), yy.UnscaledBig()) - return z -} - -// Sub sets z to the difference x-y and returns z. -// The scale of z is the greater of the scales of x and y. -func (z *Dec) Sub(x, y *Dec) *Dec { - xx, yy := upscale(x, y) - z.SetScale(xx.Scale()) - z.UnscaledBig().Sub(xx.UnscaledBig(), yy.UnscaledBig()) - return z -} - -// Mul sets z to the product x*y and returns z. -// The scale of z is the sum of the scales of x and y. -func (z *Dec) Mul(x, y *Dec) *Dec { - z.SetScale(x.Scale() + y.Scale()) - z.UnscaledBig().Mul(x.UnscaledBig(), y.UnscaledBig()) - return z -} - -// Round sets z to the value of x rounded to Scale s using Rounder r, and -// returns z. -func (z *Dec) Round(x *Dec, s Scale, r Rounder) *Dec { - return z.QuoRound(x, NewDec(1, 0), s, r) -} - -// QuoRound sets z to the quotient x/y, rounded using the given Rounder to the -// specified scale. -// -// If the rounder is RoundExact but the result can not be expressed exactly at -// the specified scale, QuoRound returns nil, and the value of z is undefined. -// -// There is no corresponding Div method; the equivalent can be achieved through -// the choice of Rounder used. -// -func (z *Dec) QuoRound(x, y *Dec, s Scale, r Rounder) *Dec { - return z.quo(x, y, sclr{s}, r) -} - -func (z *Dec) quo(x, y *Dec, s scaler, r Rounder) *Dec { - scl := s.Scale(x, y) - var zzz *Dec - if r.UseRemainder() { - zz, rA, rB := new(Dec).quoRem(x, y, scl, true, new(big.Int), new(big.Int)) - zzz = r.Round(new(Dec), zz, rA, rB) - } else { - zz, _, _ := new(Dec).quoRem(x, y, scl, false, nil, nil) - zzz = r.Round(new(Dec), zz, nil, nil) - } - if zzz == nil { - return nil - } - return z.Set(zzz) -} - -// QuoExact sets z to the quotient x/y and returns z when x/y is a finite -// decimal. Otherwise it returns nil and the value of z is undefined. -// -// The scale of a non-nil result is "x.Scale() - y.Scale()" or greater; it is -// calculated so that the remainder will be zero whenever x/y is a finite -// decimal. -func (z *Dec) QuoExact(x, y *Dec) *Dec { - return z.quo(x, y, scaleQuoExact{}, RoundExact) -} - -// quoRem sets z to the quotient x/y with the scale s, and if useRem is true, -// it sets remNum and remDen to the numerator and denominator of the remainder. -// It returns z, remNum and remDen. -// -// The remainder is normalized to the range -1 < r < 1 to simplify rounding; -// that is, the results satisfy the following equation: -// -// x / y = z + (remNum/remDen) * 10**(-z.Scale()) -// -// See Rounder for more details about rounding. -// -func (z *Dec) quoRem(x, y *Dec, s Scale, useRem bool, - remNum, remDen *big.Int) (*Dec, *big.Int, *big.Int) { - // difference (required adjustment) compared to "canonical" result scale - shift := s - (x.Scale() - y.Scale()) - // pointers to adjusted unscaled dividend and divisor - var ix, iy *big.Int - switch { - case shift > 0: - // increased scale: decimal-shift dividend left - ix = new(big.Int).Mul(x.UnscaledBig(), exp10(shift)) - iy = y.UnscaledBig() - case shift < 0: - // decreased scale: decimal-shift divisor left - ix = x.UnscaledBig() - iy = new(big.Int).Mul(y.UnscaledBig(), exp10(-shift)) - default: - ix = x.UnscaledBig() - iy = y.UnscaledBig() - } - // save a copy of iy in case it to be overwritten with the result - iy2 := iy - if iy == z.UnscaledBig() { - iy2 = new(big.Int).Set(iy) - } - // set scale - z.SetScale(s) - // set unscaled - if useRem { - // Int division - _, intr := z.UnscaledBig().QuoRem(ix, iy, new(big.Int)) - // set remainder - remNum.Set(intr) - remDen.Set(iy2) - } else { - z.UnscaledBig().Quo(ix, iy) - } - return z, remNum, remDen -} - -type sclr struct{ s Scale } - -func (s sclr) Scale(x, y *Dec) Scale { - return s.s -} - -type scaleQuoExact struct{} - -func (sqe scaleQuoExact) Scale(x, y *Dec) Scale { - rem := new(big.Rat).SetFrac(x.UnscaledBig(), y.UnscaledBig()) - f2, f5 := factor2(rem.Denom()), factor(rem.Denom(), bigInt[5]) - var f10 Scale - if f2 > f5 { - f10 = Scale(f2) - } else { - f10 = Scale(f5) - } - return x.Scale() - y.Scale() + f10 -} - -func factor(n *big.Int, p *big.Int) int { - // could be improved for large factors - d, f := n, 0 - for { - dd, dm := new(big.Int).DivMod(d, p, new(big.Int)) - if dm.Sign() == 0 { - f++ - d = dd - } else { - break - } - } - return f -} - -func factor2(n *big.Int) int { - // could be improved for large factors - f := 0 - for ; n.Bit(f) == 0; f++ { - } - return f -} - -func upscale(a, b *Dec) (*Dec, *Dec) { - if a.Scale() == b.Scale() { - return a, b - } - if a.Scale() > b.Scale() { - bb := b.rescale(a.Scale()) - return a, bb - } - aa := a.rescale(b.Scale()) - return aa, b -} - -func exp10(x Scale) *big.Int { - if int(x) < len(exp10cache) { - return &exp10cache[int(x)] - } - return new(big.Int).Exp(bigInt[10], big.NewInt(int64(x)), nil) -} - -func (x *Dec) rescale(newScale Scale) *Dec { - shift := newScale - x.Scale() - switch { - case shift < 0: - e := exp10(-shift) - return NewDecBig(new(big.Int).Quo(x.UnscaledBig(), e), newScale) - case shift > 0: - e := exp10(shift) - return NewDecBig(new(big.Int).Mul(x.UnscaledBig(), e), newScale) - } - return x -} - -var zeros = []byte("00000000000000000000000000000000" + - "00000000000000000000000000000000") -var lzeros = Scale(len(zeros)) - -func appendZeros(s []byte, n Scale) []byte { - for i := Scale(0); i < n; i += lzeros { - if n > i+lzeros { - s = append(s, zeros...) - } else { - s = append(s, zeros[0:n-i]...) - } - } - return s -} - -func (x *Dec) String() string { - if x == nil { - return "" - } - scale := x.Scale() - s := []byte(x.UnscaledBig().String()) - if scale <= 0 { - if scale != 0 && x.unscaled.Sign() != 0 { - s = appendZeros(s, -scale) - } - return string(s) - } - negbit := Scale(-((x.Sign() - 1) / 2)) - // scale > 0 - lens := Scale(len(s)) - if lens-negbit <= scale { - ss := make([]byte, 0, scale+2) - if negbit == 1 { - ss = append(ss, '-') - } - ss = append(ss, '0', '.') - ss = appendZeros(ss, scale-lens+negbit) - ss = append(ss, s[negbit:]...) - return string(ss) - } - // lens > scale - ss := make([]byte, 0, lens+1) - ss = append(ss, s[:lens-scale]...) - ss = append(ss, '.') - ss = append(ss, s[lens-scale:]...) - return string(ss) -} - -// Format is a support routine for fmt.Formatter. It accepts the decimal -// formats 'd' and 'f', and handles both equivalently. -// Width, precision, flags and bases 2, 8, 16 are not supported. -func (x *Dec) Format(s fmt.State, ch rune) { - if ch != 'd' && ch != 'f' && ch != 'v' && ch != 's' { - fmt.Fprintf(s, "%%!%c(dec.Dec=%s)", ch, x.String()) - return - } - fmt.Fprintf(s, x.String()) -} - -func (z *Dec) scan(r io.RuneScanner) (*Dec, error) { - unscaled := make([]byte, 0, 256) // collects chars of unscaled as bytes - dp, dg := -1, -1 // indexes of decimal point, first digit -loop: - for { - ch, _, err := r.ReadRune() - if err == io.EOF { - break loop - } - if err != nil { - return nil, err - } - switch { - case ch == '+' || ch == '-': - if len(unscaled) > 0 || dp >= 0 { // must be first character - r.UnreadRune() - break loop - } - case ch == '.': - if dp >= 0 { - r.UnreadRune() - break loop - } - dp = len(unscaled) - continue // don't add to unscaled - case ch >= '0' && ch <= '9': - if dg == -1 { - dg = len(unscaled) - } - default: - r.UnreadRune() - break loop - } - unscaled = append(unscaled, byte(ch)) - } - if dg == -1 { - return nil, fmt.Errorf("no digits read") - } - if dp >= 0 { - z.SetScale(Scale(len(unscaled) - dp)) - } else { - z.SetScale(0) - } - _, ok := z.UnscaledBig().SetString(string(unscaled), 10) - if !ok { - return nil, fmt.Errorf("invalid decimal: %s", string(unscaled)) - } - return z, nil -} - -// SetString sets z to the value of s, interpreted as a decimal (base 10), -// and returns z and a boolean indicating success. The scale of z is the -// number of digits after the decimal point (including any trailing 0s), -// or 0 if there is no decimal point. If SetString fails, the value of z -// is undefined but the returned value is nil. -func (z *Dec) SetString(s string) (*Dec, bool) { - r := strings.NewReader(s) - _, err := z.scan(r) - if err != nil { - return nil, false - } - _, _, err = r.ReadRune() - if err != io.EOF { - return nil, false - } - // err == io.EOF => scan consumed all of s - return z, true -} - -// Scan is a support routine for fmt.Scanner; it sets z to the value of -// the scanned number. It accepts the decimal formats 'd' and 'f', and -// handles both equivalently. Bases 2, 8, 16 are not supported. -// The scale of z is the number of digits after the decimal point -// (including any trailing 0s), or 0 if there is no decimal point. -func (z *Dec) Scan(s fmt.ScanState, ch rune) error { - if ch != 'd' && ch != 'f' && ch != 's' && ch != 'v' { - return fmt.Errorf("Dec.Scan: invalid verb '%c'", ch) - } - s.SkipSpace() - _, err := z.scan(s) - return err -} - -// Gob encoding version -const decGobVersion byte = 1 - -func scaleBytes(s Scale) []byte { - buf := make([]byte, scaleSize) - i := scaleSize - for j := 0; j < scaleSize; j++ { - i-- - buf[i] = byte(s) - s >>= 8 - } - return buf -} - -func scale(b []byte) (s Scale) { - for j := 0; j < scaleSize; j++ { - s <<= 8 - s |= Scale(b[j]) - } - return -} - -// GobEncode implements the gob.GobEncoder interface. -func (x *Dec) GobEncode() ([]byte, error) { - buf, err := x.UnscaledBig().GobEncode() - if err != nil { - return nil, err - } - buf = append(append(buf, scaleBytes(x.Scale())...), decGobVersion) - return buf, nil -} - -// GobDecode implements the gob.GobDecoder interface. -func (z *Dec) GobDecode(buf []byte) error { - if len(buf) == 0 { - return fmt.Errorf("Dec.GobDecode: no data") - } - b := buf[len(buf)-1] - if b != decGobVersion { - return fmt.Errorf("Dec.GobDecode: encoding version %d not supported", b) - } - l := len(buf) - scaleSize - 1 - err := z.UnscaledBig().GobDecode(buf[:l]) - if err != nil { - return err - } - z.SetScale(scale(buf[l : l+scaleSize])) - return nil -} - -// MarshalText implements the encoding.TextMarshaler interface. -func (x *Dec) MarshalText() ([]byte, error) { - return []byte(x.String()), nil -} - -// UnmarshalText implements the encoding.TextUnmarshaler interface. -func (z *Dec) UnmarshalText(data []byte) error { - _, ok := z.SetString(string(data)) - if !ok { - return fmt.Errorf("invalid inf.Dec") - } - return nil -} diff --git a/kube2msb/src/vendor/gopkg.in/inf.v0/rounder.go b/kube2msb/src/vendor/gopkg.in/inf.v0/rounder.go deleted file mode 100644 index 3a97ef5..0000000 --- a/kube2msb/src/vendor/gopkg.in/inf.v0/rounder.go +++ /dev/null @@ -1,145 +0,0 @@ -package inf - -import ( - "math/big" -) - -// Rounder represents a method for rounding the (possibly infinite decimal) -// result of a division to a finite Dec. It is used by Dec.Round() and -// Dec.Quo(). -// -// See the Example for results of using each Rounder with some sample values. -// -type Rounder rounder - -// See http://speleotrove.com/decimal/damodel.html#refround for more detailed -// definitions of these rounding modes. -var ( - RoundDown Rounder // towards 0 - RoundUp Rounder // away from 0 - RoundFloor Rounder // towards -infinity - RoundCeil Rounder // towards +infinity - RoundHalfDown Rounder // to nearest; towards 0 if same distance - RoundHalfUp Rounder // to nearest; away from 0 if same distance - RoundHalfEven Rounder // to nearest; even last digit if same distance -) - -// RoundExact is to be used in the case when rounding is not necessary. -// When used with Quo or Round, it returns the result verbatim when it can be -// expressed exactly with the given precision, and it returns nil otherwise. -// QuoExact is a shorthand for using Quo with RoundExact. -var RoundExact Rounder - -type rounder interface { - - // When UseRemainder() returns true, the Round() method is passed the - // remainder of the division, expressed as the numerator and denominator of - // a rational. - UseRemainder() bool - - // Round sets the rounded value of a quotient to z, and returns z. - // quo is rounded down (truncated towards zero) to the scale obtained from - // the Scaler in Quo(). - // - // When the remainder is not used, remNum and remDen are nil. - // When used, the remainder is normalized between -1 and 1; that is: - // - // -|remDen| < remNum < |remDen| - // - // remDen has the same sign as y, and remNum is zero or has the same sign - // as x. - Round(z, quo *Dec, remNum, remDen *big.Int) *Dec -} - -type rndr struct { - useRem bool - round func(z, quo *Dec, remNum, remDen *big.Int) *Dec -} - -func (r rndr) UseRemainder() bool { - return r.useRem -} - -func (r rndr) Round(z, quo *Dec, remNum, remDen *big.Int) *Dec { - return r.round(z, quo, remNum, remDen) -} - -var intSign = []*big.Int{big.NewInt(-1), big.NewInt(0), big.NewInt(1)} - -func roundHalf(f func(c int, odd uint) (roundUp bool)) func(z, q *Dec, rA, rB *big.Int) *Dec { - return func(z, q *Dec, rA, rB *big.Int) *Dec { - z.Set(q) - brA, brB := rA.BitLen(), rB.BitLen() - if brA < brB-1 { - // brA < brB-1 => |rA| < |rB/2| - return z - } - roundUp := false - srA, srB := rA.Sign(), rB.Sign() - s := srA * srB - if brA == brB-1 { - rA2 := new(big.Int).Lsh(rA, 1) - if s < 0 { - rA2.Neg(rA2) - } - roundUp = f(rA2.Cmp(rB)*srB, z.UnscaledBig().Bit(0)) - } else { - // brA > brB-1 => |rA| > |rB/2| - roundUp = true - } - if roundUp { - z.UnscaledBig().Add(z.UnscaledBig(), intSign[s+1]) - } - return z - } -} - -func init() { - RoundExact = rndr{true, - func(z, q *Dec, rA, rB *big.Int) *Dec { - if rA.Sign() != 0 { - return nil - } - return z.Set(q) - }} - RoundDown = rndr{false, - func(z, q *Dec, rA, rB *big.Int) *Dec { - return z.Set(q) - }} - RoundUp = rndr{true, - func(z, q *Dec, rA, rB *big.Int) *Dec { - z.Set(q) - if rA.Sign() != 0 { - z.UnscaledBig().Add(z.UnscaledBig(), intSign[rA.Sign()*rB.Sign()+1]) - } - return z - }} - RoundFloor = rndr{true, - func(z, q *Dec, rA, rB *big.Int) *Dec { - z.Set(q) - if rA.Sign()*rB.Sign() < 0 { - z.UnscaledBig().Add(z.UnscaledBig(), intSign[0]) - } - return z - }} - RoundCeil = rndr{true, - func(z, q *Dec, rA, rB *big.Int) *Dec { - z.Set(q) - if rA.Sign()*rB.Sign() > 0 { - z.UnscaledBig().Add(z.UnscaledBig(), intSign[2]) - } - return z - }} - RoundHalfDown = rndr{true, roundHalf( - func(c int, odd uint) bool { - return c > 0 - })} - RoundHalfUp = rndr{true, roundHalf( - func(c int, odd uint) bool { - return c >= 0 - })} - RoundHalfEven = rndr{true, roundHalf( - func(c int, odd uint) bool { - return c > 0 || c == 0 && odd == 1 - })} -} -- cgit 1.2.3-korg