
TOSCA Processing
Parser/Checker



History
• More than 2 years ago, part of Domain 2.0 effort within AT&T (SDN, network automation, etc), Intelligent Service Composition (ISC) platform
• Multiple aspects:

• Model driven: resources/services/products
• Modeling language (TOSCA)
• Mode catalog

• Interactive service composition (Composition UI, Composition Server)
• Deployment (MSO interaction)



Scope
• As generic as it gets

• Not bound to a particular type schema/profile
• No particular target orchestrator.

• Generic processing tools and generic composition
• Composition: the graphical assembly of node templates into a topology
• Generic model catalog (TOSCA model persistence) and catalog API
• Limited to TOSCA yaml profile
• Java environment



Goal
• Ensure that a (set of) TOSCA template(s) is conform to a correctly defined type system

• Avoid errors at more expensive later processing stages.
• Pre-requisite to further processing: UI, persistence

• Generate an intermediate form that could facilitate further processing
• Extensibility

• Accommodate extensions to the standard and checks pertinent to these extensions



Limitations
• We were not building topology templates and most of the time not even topology models: designs
• TOSCA limitations: business constraints that cannot be expressed in TOSCA

• topology graph connectivity constraints
• more complex data dependencies



The checker
• Validate yaml document

• might seem ordinary but watch for streaming documents (multiple documents within one file), yaml anchors, etc
• Syntax check

• 2 grammars, 1.0 and 1.1, with the possibility of handling a mix of documents version wise
• Accept the ‘short forms’

• We declare the short forms within the grammar
• We build a canonical form from which the shorts forms are eliminated (so further processing steps do not need to handle them)

• Process the entire document tree specified through import statements



Syntax
• Grammar written in Yaml and syntax check performed through a modified version of the kwalifylibrary _requirement_assignment_definition: &requirement_assignment_definitiontype: mapname: requirement_assignment_definitionshort: nodemapping:capability:required: notype: strnode:required: notype: strrelationship:required: notype: mapshort: typemapping:"type":required: notype: strproperties:required: notype: mapmapping:=:name: property_assignmenttype: anyinterfaces:required: notype: mapmapping:=:*template_interface_definitionnode_filter:required: no<<: *node_filter_definition



Checking
• type hierarchy checks for all constructs

• valid re-definitions
• from relatively simple (properties) to rather complicated (interface opearations)

• valid type references: all referenced types are pre-declared (as super-types, as valid source types, etc)
• templates respect their respective type definition

• example: check type of interface operation inputs
• other references: capabilities and requirements in substitution mappings

• data checks: assignments match the type specification, function argument compatibility (for built-in functions), constraints matching, ..



Output
• Error reporting

• Differs depending on the stages
• Document position indication during parsing
• Document path and rule during syntax check
• Document path during checking

• Catalog
• No explicit representation of TOSCA constructs, offers a query interface with results being exposed as common Java types: maps, lists, ..

• Experimented with a proxy based approach
• Apache jxpath based processing (xquery against the in-memory representation of a set of TOSCA templates). 



API,CLI and Service
• We offer a simple API that allows access to any stage of the checker

• One can build an in-memory representation of a TOSCA document and skip the yaml parsing (we use it in our ‘recycler’).
• Re-usable Catalog (hierarchical Catalogs)

• One or more documents can be processed and the resulting Catalog be preserved and used for later processing of other documents using the previous catalog as ‘base’ catalog
• Used in checker service (REST API) where a client can first submit a schema and subsequently check templates against that schema 

• Simple CLI for TOSCA yaml documents checking.
• Simple REST service layer on top of checker API



More processing
• Test if a template is ‘complete’, i.e. it constitutes a topology template or self contained (all requirements can be satisfied within the topology model)
• Persistence: we store TOSDA model in a graph database (neo4j) and offer a retrival API

• Used by the composition engine
• Validation engine

• Catalog anad topology graph exposed to Java scripts implementing validation rules 


